ECON 7310 Elements of Econometrics Week 10: Instrumental Variables Regression

David Du¹

¹ University of Queensland

Draft

メロトメ 御 トメ 君 トメ 君 トー 君 \mathcal{L} 1 / 49

Outline

- \blacktriangleright IV Regression: Why and What; Two Stage Least Squares
- ▶ The General IV Regression Model
- \blacktriangleright Checking Instrument Validity
	- 1. Weak and strong instruments
	- 2. Instrument exogeneity
- \blacktriangleright Application: Demand for cigarettes
- ▶ Where Do Instruments Come From?

IV Regression: Why?

 \blacktriangleright Three important threats to internal validity are:

- \triangleright Omitted variable bias from a variable that is correlated with X but is unobserved (so cannot be included in the regression) and for which there's no adequate control variable;
- \triangleright Simultaneous causality bias (*X* causes *Y*, *Y* causes *X*);
- **Errors-in-variables bias (** X **is measured with error)**
- \blacktriangleright All three problems result in $E(u|X) \neq 0$.
- Instrumental variables regression can eliminate bias when $E(u|X) \neq 0$ by using an instrumental variable (IV), *Z*.

The IV Estimator with one Regressor and one Instrument sw Section 12.1

 $Y_i = \beta_0 + \beta_1 X_i + u_i$

- IV regression breaks X into two parts: a part that might be correlated with *u*, and a part that is not. By isolating the part that is not correlated with u , it is possible to estimate β_1 .
- \triangleright This is done using an instrumental variable, Z_i , which is correlated with *Xⁱ* but uncorrelated with *ui*.
- \blacktriangleright By exploiting the correlation of Z_i and X_i , we obtain a consistent estimator.

Endogeneity and Exogeneity, and Conditions for a Valid Instrument

- \blacktriangleright Endogeneity and Exogeneity
	- \triangleright An **endogenous** variable is one that is correlated with μ
	- \triangleright An **exogenous** variable is one that is uncorrelated with μ
- \triangleright For an instrumental variable (an **instrument**) *Z* to be valid, it must satisfy two conditions:
	- 1. **Instrument relevance:** $corr(Z_i, X_i) \neq 0$
	- 2. **Instrument exogeneity:** $corr(Z_i, u_i) = 0$
- **If** Suppose for now that you have such a Z_i (we will discuss how to find instrumental variables later).

5 / 49

イロトメ 倒 トメ ミトメ ミトリ ここ めなく

 \blacktriangleright How to use Z_i to estimate β_1 ?

The IV estimator with one *X* and one *Z*

Two Stage Least Squares (TSLS):

As it sounds, TSLS has two stages – two regressions:

Stage 1: Isolate the part of *X* that is uncorrelated with *u* by regressing *X* on *Z* using OLS:

$$
X_i = \pi_0 + \pi_1 Z_i + v_i
$$

- **E** Because Z_i is uncorrelated with u_i , $\pi_0 + \pi_1 Z_i$ is uncorrelated with u_i .
- \blacktriangleright (π_0 , π_1) unknown. So, we use consistent estimates ($\hat{\pi}_0$, $\hat{\pi}_1$), i.e., OLS.
- \triangleright Compute the predicted values of X_i ,

$$
\widehat{X}_i = \widehat{\pi}_0 + \widehat{\pi}_1 Z_i
$$

for $i = 1, \ldots, n$.

Two Stage Least Squares (continued)

Stage 2: Replace *X_i* by *X_i* in the regression of interest: regress *Y* on *X_i* using OLS:

$$
Y_i = \beta_0 + \beta_1 \widehat{X}_i + u_i
$$

- Because \hat{X}_i is not correlated with u_i , the first least squares assumption, $E[u|\hat{X}] = 0$ holds here (when *n* is large).
- **I** Thus, β_1 can be estimated by regressing *Y* on \hat{X} by OLS
- The resulting estimator is called the Two Stage Least Squares (TSLS) estimator, $\widehat{\beta}_1^{TSLS}$.

How does IV work?

Example # Philip Wright's problem:

- \triangleright Philip Wright was concerned with an important economic problem of his day (1920s): how to set an import tariff such as butter.
- \triangleright Observe data on butter quantity Q_i and price P_i each year (US).
- \blacktriangleright The key is to estimate demand and supply elasticities. So, log-log form

$$
\ln(Q_i) = \beta_0 + \beta_1 \ln(P_i) + U_i
$$

- If we run OLS, is $\widehat{\beta}_1$ the price elasticity of demand? or supply?
- In fact $\widehat{\beta}_1$ suffers from simultaneous causality bias because price and quantity are determined by the interaction of demand and supply:

simultaneous causality bias in supply and demand

(a) Demand and supply in three time periods

data scatter diagram must look like

Would a regression using these data produce the demand curve?

But... what would you get if only supply shifted?

- \triangleright TSLS estimates the demand curve by isolating shifts in price and quantity that arise from shifts in supply.
- \triangleright *Z* is a variable that shifts supply but not demand.

TSLS in the supply-demand example:

I Regression equation: $ln(Q_i) = \beta_0 + \beta_1 ln(P_i) + u_i$

- Exection Let $Z =$ rainfall in dairy-producing regions. Is Z a valid instrument?
	- 1. **Instrument relevance:** $corr(Z_i, \ln(P_i)) \neq 0$? Plausibly: insufficient rainfall ⇒ less grazing ⇒ butter supply ↓ ⇒ prices ↑
	- 2. **Instrument exogeneity:** $corr(Z_i, u_i) = 0$? Plausibly: rainfalls in Europe does not *directly* affect demand for butter in US
- \blacktriangleright Two Stage Least Squares:
- Stage 1: Regress $\ln(P_i)$ on Z_i , compute fitted value $\widehat{\ln(P_i)}$ \Rightarrow isolates part of $ln(P_i)$ that is explained by supply shifts (not by demand)
- Stage 2: Regress $\ln(Q_i)$ on $\ln(P_i)$, compute fitted value

 \Rightarrow uses shifts in the supply curve to trace out the demand curve

Statistical Properties of β_1^{TSLS}

- \triangleright $\widehat{\beta}_1^{TSLS}$ is consistent $(\widehat{\beta}_1^{TSLS} \stackrel{p}{\longrightarrow} \beta_1)$ and asymptotically normal.
- \blacktriangleright By asymptotic normality, we can conduct hypothesis testing and construct confidence intervals.
- \triangleright Note that the OLS standard error in Stage 2 is misleading because it does not take into account the fact that the regressor is a fitted value \hat{X} .
- \blacktriangleright Most econometric softwares automatically computes correct $SE(\widehat{\beta}_1^{TSLS})$.
- \blacktriangleright Then, a 95% confidence interval is given by

$$
\widehat{\beta}_1^{TSLS} \pm 1.96 SE(\widehat{\beta}_1^{TSLS})
$$

Application: Demand for Cigarettes

- \triangleright US government wishes to impose tax on cigarettes to reduce cigarette consumption \Rightarrow to reduce illnesses and deaths from smoking, social costs, negative externalities, etc.
- \triangleright So, it is critical to know the price elasticity of cigarette demand.
	- \blacktriangleright Suppose it is aimed to reduce cigarette consumption by 20%.
	- If the price elasticity is -0.5 , the price has to increase by 40%.
- \triangleright So, we consider a log-log specification.

 $\ln(Q_i) = \beta_0 + \beta_1 \ln(P_i) + U_i$

where *Qⁱ* is annual cigarette consumption *Pⁱ* is average price including tax for state $i = 1, \ldots, 48$. (In fact, panel data 1985-1995)

 \triangleright Supply-Demand interact \Rightarrow OLS will suffer simultaneity bias.

Application: Demand for Cigarettes, continued

 \blacktriangleright Again, the regression equation is

 $\ln(Q_i) = \beta_0 + \beta_1 \ln(P_i) + U_i$

- **Proposed IV:** Z_i = general sales tax per pack = $SalesTax_i$
	- **Instrument relevance:** $corr(Sales Tax_i, ln(P_i)) \neq 0$
	- **Instrument exogeneity:** $corr(SalesTax_i, u_i) = 0$
- I Relevance should be fine because *SalesTaxⁱ* ↑⇒ *Pⁱ* ↑
- Exogeneity: *SalesTax_i* affects $ln(Q_i)$ only indirectly through $ln(P_i)$
	- ▶ Each state *i* chooses *SalesTax_i* depending on a number of elements such as income tax, property tax, other taxes to finance its public undertakings
	- \blacktriangleright Those choices about public finance are driven by political considerations, not by demand for cigarettes.
	- \triangleright So, it is plausible that *SaleTax_i* is exogenous.

Application: Demand for Cigarettes, Stage 1

メロトメ団 トメモトメモト 一番 \circ Q 16 / 49

Application: Demand for Cigarettes, Stage 2

- \blacktriangleright These coefficients are the TSLS estimates
- \blacktriangleright The standard errors are wrong because they ignore the fact that the first stage was estimated

Application: Demand for Cigarettes, All at once

Estimated cigarette demand equation:

In($Q_i^{cigare ttes}$) = 9.72 - 1.08 $ln(P_i^{cigare ttes})$, n = 48 (1.53) (0.31)

Summary So far

- \blacktriangleright A valid instrument Z must satisfy two conditions:
	- \blacktriangleright relevance: *corr* $(Z_i, X_i) \neq 0$
	- **P** exogeneity: $corr(Z_i, u_i) = 0$
- ▶ TSLS: (1) regress *X* on *Z* to get \widehat{X} , (2) regress *Y* on \widehat{X}
- \blacktriangleright The key idea: the first stage isolates part of X that is uncorrelated with μ
- \blacktriangleright If the instrument is valid, then the large-sample sampling distribution of the TSLS estimator is normal, so inference proceeds as usual

The General IV Regression Model SW Section 12.2

- \triangleright So far we have considered IV regression with a single endogenous regressor (*X*) and a single instrument (*Z*).
- \blacktriangleright We need to extend this to:
	- \blacktriangleright multiple endogenous regressors (X_1, \ldots, X_k)
	- \triangleright multiple included exogenous variables (W_1, \ldots, W_r) or control variables, which need to be included for the usual OV reason
	- In multiple instrumental variables (Z_1, \ldots, Z_m) .
- \triangleright More (relevant) instruments can produce a smaller variance of TSLS: the R^2 of the first stage increases, so you have more variation in \hat{X} .
- \blacktriangleright New terminology: identification & overidentification

Identification

- In general, a parameter is said to be **identified** if different values of the parameter produce different distributions of the data.
- \blacktriangleright In linear regression problems, identification depends on the number of instruments (*m*) and the number of endogenous regressors (*k*).

$$
Y_i = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki} + \beta_{k+1} W_{1i} + \ldots + \beta_{k+r} W_{ri} + u_i
$$

- \blacktriangleright X_{1i}, \ldots, X_{ki} : endogenous regressors (potentially correlated with u_i)
- W_1, \ldots, W_n : included exogenous regressors (uncorrelated with u_i)
- \blacktriangleright Z_{1j}, \ldots, Z_{mi} : instrumental variables (excluded exogenous variables)
- \blacktriangleright β_1, \ldots, β_k are said to be
	- **Exactly identified** if $m = k$, e.g. we studied so far $k = 1$ and $m = 1$.
	- \triangleright **overidentified** if $m > k$
	- **underidentified** if $m < k$, e.g., if $k = 1$ but $m = 0$, no identification!

TSLS with a Single Endogenous Regressor

 \triangleright Consider the regression model;

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \ldots + \beta_{1+r} W_{ri} + U_i$

- \blacktriangleright We have *m* instruments: Z_1, \ldots, Z_m .
- Stage 1: Regress X on all the exogenous regressors (W_1, \ldots, W_r) and (Z_1, \ldots, Z_m) , and an intercept, by OLS. Obtain predicted values \hat{X}
- Stage 2: Regress *Y* on \hat{X} , (W_1, \ldots, W_r), and an intercept, by OLS
	- \triangleright The coefficients from this second stage regression are the TSLS estimators, but SEs are wrong
	- \triangleright To get correct SEs, do this (in a single step) using your regression software

Demand for cigarettes, continued

 \triangleright We will estimate the regression model

$$
\ln(Q_i) = \beta_0 + \beta_1 \ln(P_i) + \ln(\text{hcome}_i) + u_i
$$

- \triangleright We will use two ($m = 2$) instruments: general sales tax (Z_1) and cigarette specific tax (Z_2) .
- \triangleright Suppose income is exogenous (this is plausible ? why?), and we also want to estimate the income elasticity:
- \blacktriangleright Endogenous variable: $\ln(P_i)$, so $k = 1$
- **In** Since $(m > k)$, β_1 is over-identified.

Example: Cigarette demand, one instrument

 $IV:$ rtaxso = real overall sales tax in state \mathbf{v} \mathbf{w} , \mathbf{v} , \mathbf{z} . ivreq lpackpc lperinc (lravgprs = rtaxso) if year==1995. r. Number of $obs =$ IV (2SLS) regression with robust standard errors -48 $F(2, 45) = 8.19$ $Prob > F$ = 0.0009 R -squared = 0.4189 Root MSE $= 18957$ Robust - 1 lpackpc | Coef. Std. Err. t P>|t| [95% Conf. Interval] 1ravgprs | -1.143375 .3723025 -3.07 0.004 -1.893231 -.3935191 lperinc | .214515 .3117467 0.69 0.495 -.413375 .842405 cons | 9.430658 1.259392 7.49 0.000 6.894112 11.9672 Instrumented: lravgprs Instruments: lperinc rtaxso STATA lists ALL the exogenous regressors as instruments - slightly different terminology than we have been using --------------------------. Running IV as a single command yields the correct SEs * Use . r for heteroskedasticity-robust SEs

Example: Cigarette demand, two instruments

- **In Smaller SEs for** $m = 2$ **. Using 2 instruments gives more information**
- \blacktriangleright Low income elasticity (not a luxury good), though insignificantly
- \blacktriangleright Surprisingly high price elasticity

TSLS with Multiple Endogenous Regressors

Idea is exactly the same as the case with $k = 1$. Just apply Step 1 for all endogenous variables.

 \triangleright Consider the regression model;

 $Y_i = \beta_0 + \beta_1 X_i + \ldots + \beta_k X_k + \beta_{k+1} W_i + \ldots + \beta_{k+r} W_i + u_i$

- \blacktriangleright We have *m* instruments: Z_1, \ldots, Z_m with $m > k$.
- Stage 1: Regress each of X_1, \ldots, X_k on all the exogenous regressors (W_1, \ldots, W_r) and (Z_1, \ldots, Z_m) , and an intercept, by OLS. Obtain predicted values $\widehat{X}_1 \ldots \widehat{X}_k$
- Stage 2: Regress *Y* on \hat{X}_1 . . . , \hat{X}_k , (W_1 , . . . , W_r), and an intercept, by OLS
	- \triangleright To get correct SEs, do this (in a single step) using your regression software

The General Instrument Validity Assumptions

$Y_i = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki} + \beta_{k+1} W_{1i} + \ldots + \beta_{k+r} W_{ri} + u_i$

1. **Instrument relevance:**

- General case, multiple *X*'s: Suppose the second stage regression could be run using the predicted values from the population first stage regression. Then: there is no perfect multicollinearity in this (infeasible) second stage regression.
- \triangleright Special case of one X: the general assumption is equivalent to (a) at least one instrument must enter the population first stage regression, and (b) the W's are not perfectly multicollinear.
- 2. **Instrument exogeneity:** $corr(Z_1, u_i) = 0, \ldots, corr(Z_m, u_i) = 0$

The IV Regression Assumptions

$$
Y_i = \beta_0 + \beta_1 X_{1i} + \ldots + \beta_k X_{ki} + \beta_{k+1} W_{1i} + \ldots + \beta_{k+r} W_{ri} + u_i
$$

- 1. $E(u_i|W_{1i},...,W_{ri})=0$. That is, Ws are really exogenous.
- 2. $(Y_i, X_{1i}, \ldots, X_{ki}, W_{1i}, \ldots, W_{ri}, Z_{1i}, \ldots, Z_{mi})$ are i.i.d.
- 3. The *X*'s, *W*'s, *Z*'s, and *Y* have nonzero, finite 4th moments
- 4. The instruments (Z_1, \ldots, Z_m) are valid.
- \blacktriangleright Under 1-4, TSLS and its t-statistic are normally distributed

Checking Instrument Validity (SW Section 12.3)

Recall the two requirements for valid instruments:

- 1. Relevance (special case of one *X*): At least one instrument must enter the population first stage regression.
- 2. Exogeneity:

All the instruments must be uncorrelated with the error term $corr(Z_{1i}, u_i) = 0, \ldots, corr(Z_{mi}, u_i) = 0$

- \triangleright What happens if one of these requirements is not satisfied? How can you check? What do you do?
- \blacktriangleright If you have multiple instruments, which should you use?

Checking Instrument Relevance

► We will focus on a **single** included endogenous regressor:

$$
Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_{1i} + \ldots + \beta_{1+r} W_{ri} + u_i
$$

 \blacktriangleright First stage regression:

$$
X_i = \pi_0 + \pi_1 Z_{1i} + \ldots + \pi_m Z_{mi} + \pi_{m+1} W_{1i} + \ldots + \pi_{m+k} W_{ki} + u_i
$$

- **If The instruments are weak** if π_1, \ldots, π_m are all either zero or nearly zero.
- \triangleright When the instruments are weak, the usual methods for statistical inference are misleading even if *n* is large.

Checking Instrument Relevance

 \blacktriangleright First stage regression:

$$
X_i = \pi_0 + \pi_1 Z_{1i} + \ldots + \pi_m Z_{mi} + \pi_{m+1} W_{1i} + \ldots + \pi_{m+k} W_{ki} + u_i
$$

- \triangleright We consider the hypothesis that all instruments are not relevant, i.e., $\pi_1 = \cdots = \pi_m = 0$
- \blacktriangleright Rule of Thumb:
	- **I** Compute *F*-statistic for $H_0: \pi_1 = \cdots = \pi_m = 0$
	- ▶ We do not worry about weak instruments if the **first stage F statistic** >10.
	- \blacktriangleright Why 10? See Appendix 12.5.
- \triangleright What do we do if instruments are weak?
	- \blacktriangleright When overidentified ($m > k$), discard weak instruments.
	- \blacktriangleright When $m = k$, find stronger instruments (or use a correct inference procedure, but this is beyond scope of the course!)

Checking Instrument Exogeneity

- 1. **Case of exact-identification** ($m = k$): there is no way to statistically test the assumption of instrument exogeneity.
	- \blacktriangleright necessary to use expert judgment based on personal knowledge
- 2. **Case of over-identification** $(m > k)$:
	- \blacktriangleright There is no way to statistically test instrument exogeneity for all instruments
	- \triangleright But, if some of instruments are certainly exogenous, we can test exogeneity of the other instruments.
	- **In This test is called the overidentifying restrictions test.**
- I Idea of overidentifying restrictions test: $(k = 1$ and $m = 2)$
	- \blacktriangleright Z_1 is exogenous for sure and want to test Z_2 .
	- ► Suppose that $\widehat{\beta}^{TSLS}$ uses only Z_1 and $\widetilde{\beta}^{TSLS}$ uses only Z_2 .
	- \triangleright We know $\widehat{\beta}^{TSLS} \stackrel{p}{\rightarrow} \beta$ for sure. If Z_2 is exogenous, it should be $\widetilde{\beta}^{TSLS} \stackrel{p}{\rightarrow} \beta$
	- **►** So. $\tilde{\beta}^{TSLS}$ is very different from $\hat{\beta}^{TSLS}$, it is evidence against exogeneity of Z₂.

Overidentifying Restrictions Test (The *J*-Statistic)

 \triangleright Overidentifying restrictions test carries out this idea implicitly. Ideally, want to test $corr(u, Z) = 0$, but *u* is unobservable. So, we use

$$
\widehat{u}^{TSLS} := Y_i - (\widehat{\beta}_0^{TSLS} + \widehat{\beta}_1^{TSLS}X_1 + \cdots + \widehat{\beta}_k^{TSLS}X_k + \widehat{\beta}_{k+1}^{TSLS}W_1 + \cdots + \widehat{\beta}_{k+r}^{TSLS}W_r)
$$

where we use the original regressors (X) not the predicted ones (X) **F** Test procedure (choose a significance level α first):

 \blacktriangleright Use OLS to estimate the coefficients in

$$
\widehat{u}^{TSLS} = \delta_0 + \delta_1 Z_1 + \cdots + \delta_m Z_m + \delta_{m+1} W_1 + \cdots + \delta_{m+r} W_r + e
$$

- If $corr(Z_j, u) = 0$ for all $j = 1, ..., m$, we must have $\delta_1 = \cdots = \delta_m = 0$
- **Compute homoskedasticity-only F-statistic testing** $H_0: \delta_1 = \cdots = \delta_m = 0$ **.**
- **►** Then, compute the J statistic $J := mF \sim \chi^2_{m-k}$.
- ► Reject H_0 if *J* > critical value at α : see the prob table of χ^2_{m-k} Or, reject H_0 if *p*-value < your significance level α .

Overidentifying Restrictions Test (The *J*-Statistic)

$$
J:=mF\sim \chi^2_{m-k}
$$

- **I** Here, $m k$ is the degree of freedom = #. of over-identifying restrictions.
- **F** Rejecting $H_0 \Rightarrow$ we have statistical evidence against H_0 at the chosen α . So, at least one of *Z*s may not be exogenous.
- ▶ The *J* statistic for Heteroskedastic errors is given in SW Section 19.7.
- \blacktriangleright When $m = k$, $J = 0$, always!
- \triangleright This makes sense: there is no way to test exogeneity of instruments if exactly identified.

Application: Demand for Cigarettes (SW Section 12.4)

- \triangleright Why are we interested in knowing the elasticity of demand for cigarettes?
- \blacktriangleright Theory of optimal taxation.
	- \triangleright optimal tax rate \propto 1/price elasticity
	- \blacktriangleright if demand is highly sensitive to price change, the tax rate should be small.
- \triangleright Negative externalities the government should intervene to reduce smoking
	- \blacktriangleright health effects of second-hand smoke? (non-monetary)
	- \blacktriangleright monetary externalities
- \triangleright Panel Data on 48 US states (1985-1995): annual cigarette consumption, average prices, income, tax rates (cigarette specific, general commodity)

Fixed Effects model of cigarette demand

Regression model:

 $\ln(Q_i t) = \alpha_i + \beta_1 \ln(P_i t) + \beta_2 \ln(Income_{it}) + u_{it}$

where $i = 1, \ldots, 48$ and $t = 1985, \ldots, 1995$

- **In State FE,** α_i **, reflects unobserved omitted factors that vary across states** but not over time, e.g. attitude towards smoking
- Even after controlling for the FE, $corr(ln(P_i), u_i)$ is plausibly nonzero because of supply/demand interactions
- \triangleright So, use TSLS to handle simultaneous causality bias
- \blacktriangleright However, the demand for addictive products like cigarettes might be inelastic in the short run. That is, the short-run elasticity ≈ 0 .

The "Change" Method, $T = 2$

- \triangleright So, we use $T = 2$ only with 1985 and 1995 ("changes" method) to focus on the long-term response, not short-term dynamics
- \blacktriangleright Regression equations for $t = 1985$ and 1995;

 $\ln(Q_{i.85}) = \alpha_i + \beta_1 \ln(P_{i.85}) + \beta_2 \ln(Income_{i.85}) + U_{i.85}$ $\ln(Q_{i,95}) = \alpha_i + \beta_1 \ln(P_{i,95}) + \beta_2 \ln(Income_{i,95}) + U_{i,95}$

Difference:

$$
[\ln(Q_{i,95}) - \ln(Q_{i,85})] = \beta_1 [\ln(P_{i,95}) - \ln(P_{i,85})]
$$

$$
\beta_2 [\ln(Income_{i,95}) - \ln(Income_{i,85})] + (u_{i,95} - u_{i,85})
$$

 \blacktriangleright Equivalently,

$$
\ln\left(\frac{Q_{i,95}}{Q_{i,85}}\right) = \beta_1 \ln\left(\frac{P_{i,95}}{P_{i,85}}\right) + \beta_2 \ln\left(\frac{\text{Income}_{i,95}}{\text{Income}_{i,85}}\right) + \mathbf{e}_i
$$

where $e_i := u_{i,95} - u_{i,85}$.

Stata: Cigarette Demand

\blacktriangleright First, define variables;

```
. gen dlpackpc = log(packpc/packpc[ n-10]);
. gen dlavgprs = log(avgprs/avgprs[ n-10]);
. gen dlperinc = log(period/period[n-10]);
. gen drtaxs = rtaxs -rtaxs[n-10];. gen drtax = rtax -rtax[-n-10];
. gen drtaxso = rtaxso-rtaxso[ n-10];
```
 $n-10$ is the $10-yr$ lagged value

One instrument, Z_1 = general sales tax only

Instrument relevance: First Stage F statistic > 10 ?

Can we check instrument exogeneity? **No**: $m = k$

メロトメ 御 トメ 君 トメ 君 トー 君 40 / 49

Two Instruments, adding Z_2 = cigarette specific tax only

First-stage F – both instruments

 $Z₁$ 22 w $\boldsymbol{\mathsf{x}}$ reg dlavgprs drtaxso drtax dlperinc ; Source | SS df Number of $obs = 48$ **MS** $F(3, 44) = 51.36$ Model | .289359873 3 .096453291 $Prob > F$ = 0.0000 R -squared = 0.7779 Residual | .082627329 44 .001877894 Adj R-squared = 0.7627 Total | .371987202 47 .007914621 $Root MSE = .04333$ dlavgprs | Coef. Std. Err. t P>|t| [95% Conf. Interval] drtaxso | .013457 .0030498 4.41 0.000 .0073106 .0196033 009687 0075734 0010488 7.22 0.000 0094597 009687 1
2682568. 3262455 0.845 0.209943 1474923 -0.20 _cons | .4919733 .0220923 22.27 0.000 .4474492 .5364973 test drtaxso drtax; (1) drtaxso = 0 (2) drtax = 0 $F(2, 44) = 75.65$ 75.65 > 10 so instruments aren't weak $Prob > F =$ 0.0000 With m>k, we can test the overidentifying restrictions...

Test the overidentifying restrictions

Test the overidentifying restrictions

- ► Recall that $J = m \times F = 2 \times 2.47 = 4.94$. which is distributed as χ^2_{2-1} if both instruments are exogenous H₀
- The critical value at 5% level is 3.84 (see the prob table of χ^2 distributions)
- **►** Hence, we reject $H_0 \Rightarrow$ at least one of the instruments is not exogenous. The J-test doesn't tell us which! You must exercise judgment...
- \triangleright *Z*₂ (cig-only tax) can be endogenous, e.g., lots of smokers (high *u*) could have political power to keep Z_2 at a low level.

Estimation Results

TABLE 12.1 Two Stage Least Squares Estimates

of the Demand for Cigarettes Using Panel Data for 48 U.S. States

Dependent variable: $\ln(Q_{ij,1995}^{eigareities}) - \ln(Q_{ij,1995}^{eigareities})$

These regressions were estimated using data for 48 U.S. states (48 observations on the 10-year differences). The data are described in Appendix 12.1. The J-test of overidentifying restrictions is described in Key Concept 12.6 (its p-value is given in parentheses), and the first-stage F-statistic is described in Key Concept 12.5. Individual coefficients are statistically significant at the *5% level or **1% significance level.

- I Elasticity=0.94: a 1% increase in prices ↓↓ cigarette sales by 0.94%.
- \blacktriangleright Increased taxes can substantially discourage cigarette consumption, at least in the long run

Where Do Valid Instruments Come From? (SW Section 12.5)

The hard part of IV analysis is finding valid instruments

▶ Method 1: economic theory

- Find a variable Z that shifts only the supply curve. Then, Z is an IV for estimation of demand.
- \blacktriangleright For example, rainfalls in Europe would changes butter production but don't change demand for butter in US

▶ Method 2: exogenous source of variation in X

- look for exogenous variation (Z) that is "as if" randomly assigned (does not directly affect *Y*) but affects *X*
- \triangleright This approach requires knowledge of the problem being studied and careful attention to the details of data
- \blacktriangleright Some examples follow

Example 1: Does putting criminals in jail reduce crime?

- ▶ Answer should be 'YES', but question is how much? How much the crime rate would decrease when the prison population increases by 1%?
- \blacktriangleright Variables in regression analysis using state data, e.g., $i = 1, \ldots, 48$.
	- \blacktriangleright *Y_i* : crime rate
	- \blacktriangleright *X_i* : incarceration rate, β_1
	- \blacktriangleright W_i : control variables (economic conditions and demographics)
- Estimating β_1 by OLS might suffer simultaneity bias. i.e., *Y* causes *X*
	- \blacktriangleright the simultaneity bias cannot be solved by better controls.
	- \blacktriangleright but a good instrument can fix this problem
- \blacktriangleright Potential instrument *Z*: prison capacity for each *i*
	- Relevance: small $Z \rightarrow$ release criminals \rightarrow large X, so *corr* (Z , X) \neq 0.
	- Exogeneity: *Z* would not directly affect *Y*, so *corr* $(Z, u) = 0$.

Example 2: Does aggressive treatment of heart attacks prolong lives?

 \blacktriangleright Variables in regression analysis, patients are indexed by $i = 1, \ldots, n$.

- Y_i : survival time (days) after heart attack
- \blacktriangleright *X_i* : dummy for cardiac catheterization, β_1 (putting a tube into a blood vessel)
- W_i : control variables (age, weight, other variables), correlated with mortality
- \triangleright OLS estimate for β_1 suffers bias: $X_i = 1$ is a decision of the patient & doctor in part based on unobserved factors. So, $corr(X_i, u_i) \neq 0$.
- \triangleright A potential instrument *Z*: distance from patient *i*'s home to the nearest cardiac catheterization hospital
	- **•** Relevance: smaller $Z \rightarrow$ easier to get treatment $X = 1$, so *corr* (*Z*, *X*) \neq 0.
	- Exogeneity: *Z* would not directly affect *Y*, so *corr* $(Z, u) = 0$.

Conclusion (SW Section 12.6)

- \triangleright A valid instrument lets us isolate a part of X that is uncorrelated with u , and that part can be used to estimate the effect of a change in *X* on *Y*
- \blacktriangleright IV regression hinges on having valid instruments:
	- **P** Relevance: Check via first-stage F , rule of thumb $F > 10$
	- \blacktriangleright Exogeneity: Test overidentifying restrictions via the J-statistic
- \triangleright A valid instrument isolates variation in X that is "as if" randomly assigned.
- \blacktriangleright The critical requirement of at least m valid instruments cannot be tested – you must use your head.