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I The General IV Regression Model
I Checking Instrument Validity

1. Weak and strong instruments
2. Instrument exogeneity

I Application: Demand for cigarettes
I Where Do Instruments Come From?
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IV Regression: Why?

I Three important threats to internal validity are:
I Omitted variable bias from a variable that is correlated with X but is

unobserved (so cannot be included in the regression) and for which there’s
no adequate control variable;

I Simultaneous causality bias (X causes Y , Y causes X );
I Errors-in-variables bias (X is measured with error)

I All three problems result in E(u|X ) 6= 0.
I Instrumental variables regression can eliminate bias when E(u|X ) 6= 0

by using an instrumental variable (IV), Z .
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The IV Estimator with one Regressor and one Instrument SW Section 12.1

Yi = β0 + β1Xi + ui

I IV regression breaks X into two parts: a part that might be correlated
with u, and a part that is not. By isolating the part that is not correlated
with u, it is possible to estimate β1.

I This is done using an instrumental variable, Zi , which is correlated with
Xi but uncorrelated with ui .

I By exploiting the correlation of Zi and Xi , we obtain a consistent
estimator.
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Endogeneity and Exogeneity, and Conditions for a Valid Instrument

I Endogeneity and Exogeneity
I An endogenous variable is one that is correlated with u
I An exogenous variable is one that is uncorrelated with u

I For an instrumental variable (an instrument) Z to be valid, it must
satisfy two conditions:

1. Instrument relevance: corr(Zi ,Xi ) 6= 0
2. Instrument exogeneity: corr(Zi , ui ) = 0

I Suppose for now that you have such a Zi (we will discuss how to find
instrumental variables later).

I How to use Zi to estimate β1?
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The IV estimator with one X and one Z

Two Stage Least Squares (TSLS):
As it sounds, TSLS has two stages – two regressions:

Stage 1: Isolate the part of X that is uncorrelated with u by regressing X on Z
using OLS:

Xi = π0 + π1Zi + vi

I Because Zi is uncorrelated with ui , π0 + π1Zi is uncorrelated with ui .
I (π0, π1) unknown. So, we use consistent estimates (π̂0, π̂1), i.e., OLS.
I Compute the predicted values of Xi ,

X̂i = π̂0 + π̂1Zi

for i = 1, . . . , n.
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Two Stage Least Squares (continued)

Stage 2: Replace Xi by X̂i in the regression of interest: regress Y on X̂i using
OLS:

Yi = β0 + β1X̂i + ui

I Because X̂i is not correlated with ui , the first least squares assumption,
E [u|X̂ ] = 0 holds here (when n is large).

I Thus, β1 can be estimated by regressing Y on X̂ by OLS
I The resulting estimator is called the Two Stage Least Squares (TSLS)

estimator, β̂TSLS
1 .
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How does IV work?

Example # Philip Wright’s problem:
I Philip Wright was concerned with an important economic problem of his

day (1920s): how to set an import tariff such as butter.
I Observe data on butter quantity Qi and price Pi each year (US).
I The key is to estimate demand and supply elasticities. So, log-log form

ln(Qi) = β0 + β1 ln(Pi) + ui

I If we run OLS, is β̂1 the price elasticity of demand? or supply?
I In fact β̂1 suffers from simultaneous causality bias because price and

quantity are determined by the interaction of demand and supply:
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simultaneous causality bias in supply and demand
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data scatter diagram must look like

Would a regression using these data produce the demand curve?
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But... what would you get if only supply shifted?

I TSLS estimates the demand curve by isolating shifts in price and
quantity that arise from shifts in supply.

I Z is a variable that shifts supply but not demand.
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TSLS in the supply-demand example:

I Regression equation: ln(Qi) = β0 + β1 ln(Pi) + ui

I Let Z = rainfall in dairy-producing regions. Is Z a valid instrument?
1. Instrument relevance: corr(Zi , ln(Pi )) 6= 0?

Plausibly: insufficient rainfall⇒ less grazing⇒ butter supply ↓ ⇒ prices ↑
2. Instrument exogeneity: corr(Zi , ui ) = 0?

Plausibly: rainfalls in Europe does not directly affect demand for butter in US
I Two Stage Least Squares:

Stage 1: Regress ln(Pi ) on Zi , compute fitted value l̂n(Pi )
⇒ isolates part of ln(Pi ) that is explained by supply shifts (not by demand)

Stage 2: Regress ln(Qi ) on l̂n(Pi ), compute fitted value
⇒ uses shifts in the supply curve to trace out the demand curve

12 / 49



Statistical Properties of β̂TSLS
1

I β̂TSLS
1 is consistent (β̂TSLS

1
p−→ β1) and asymptotically normal.

I By asymptotic normality, we can conduct hypothesis testing and
construct confidence intervals.

I Note that the OLS standard error in Stage 2 is misleading because it
does not take into account the fact that the regressor is a fitted value X̂ .

I Most econometric softwares automatically computes correct SE(β̂TSLS
1 ).

I Then, a 95% confidence interval is given by

β̂TSLS
1 ± 1.96SE(β̂TSLS

1 )
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Application: Demand for Cigarettes

I US government wishes to impose tax on cigarettes to reduce cigarette
consumption⇒ to reduce illnesses and deaths from smoking, social
costs, negative externalities, etc.

I So, it is critical to know the price elasticity of cigarette demand.
I Suppose it is aimed to reduce cigarette consumption by 20%.
I If the price elasticity is −0.5, the price has to increase by 40%.

I So, we consider a log-log specification.

ln(Qi) = β0 + β1 ln(Pi) + ui

where Qi is annual cigarette consumption Pi is average price including
tax for state i = 1, . . . , 48. (In fact, panel data 1985-1995)

I Supply-Demand interact⇒ OLS will suffer simultaneity bias.
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Application: Demand for Cigarettes, continued

I Again, the regression equation is

ln(Qi) = β0 + β1 ln(Pi) + ui

I Proposed IV: Zi = general sales tax per pack = SalesTaxi
I Instrument relevance: corr(SalesTaxi , ln(Pi )) 6= 0
I Instrument exogeneity: corr(SalesTaxi , ui ) = 0

I Relevance should be fine because SalesTaxi ↑⇒ Pi ↑
I Exogeneity: SalesTaxi affects ln(Qi) only indirectly through ln(Pi)

I Each state i chooses SalesTaxi depending on a number of elements such
as income tax, property tax, other taxes to finance its public undertakings

I Those choices about public finance are driven by political considerations, not
by demand for cigarettes.

I So, it is plausible that SaleTaxi is exogenous.
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Application: Demand for Cigarettes, Stage 1
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Application: Demand for Cigarettes, Stage 2

I These coefficients are the TSLS estimates
I The standard errors are wrong because they ignore the fact that the first

stage was estimated
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Application: Demand for Cigarettes, All at once
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Summary So far

I A valid instrument Z must satisfy two conditions:
I relevance: corr(Zi ,Xi ) 6= 0
I exogeneity: corr(Zi , ui ) = 0

I TSLS: (1) regress X on Z to get X̂ , (2) regress Y on X̂
I The key idea: the first stage isolates part of X that is uncorrelated with u
I If the instrument is valid, then the large-sample sampling distribution of

the TSLS estimator is normal, so inference proceeds as usual
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The General IV Regression Model SW Section 12.2

I So far we have considered IV regression with a single endogenous
regressor (X ) and a single instrument (Z ).

I We need to extend this to:
I multiple endogenous regressors (X1, . . . ,Xk )
I multiple included exogenous variables (W1, . . . ,Wr ) or control variables,

which need to be included for the usual OV reason
I multiple instrumental variables (Z1, . . . ,Zm).

I More (relevant) instruments can produce a smaller variance of TSLS:
the R2 of the first stage increases, so you have more variation in X̂ .

I New terminology: identification & overidentification
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Identification

I In general, a parameter is said to be identified if different values of the
parameter produce different distributions of the data.

I In linear regression problems, identification depends on the number of
instruments (m) and the number of endogenous regressors (k).

Yi = β0 + β1X1i + . . .+ βk Xki + βk+1W1i + . . .+ βk+r Wri + ui

I X1i , . . . ,Xki : endogenous regressors (potentially correlated with ui )
I W1i , . . . ,Wri : included exogenous regressors (uncorrelated with ui )
I Z1i , . . . ,Zmi : instrumental variables (excluded exogenous variables)

I β1, . . . , βk are said to be
I exactly identified if m = k , e.g. we studied so far k = 1 and m = 1.
I overidentified if m > k
I underidentified if m < k , e.g., if k = 1 but m = 0, no identification!
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TSLS with a Single Endogenous Regressor

I Consider the regression model;

Yi = β0 + β1Xi + β2W1i + . . .+ β1+r Wri + ui

I We have m instruments: Z1, . . . ,Zm.

Stage 1: Regress X on all the exogenous regressors (W1, . . . ,Wr ) and
(Z1, . . . ,Zm), and an intercept, by OLS. Obtain predicted values X̂

Stage 2: Regress Y on X̂ , (W1, . . . ,Wr ), and an intercept, by OLS
I The coefficients from this second stage regression are the TSLS

estimators, but SEs are wrong
I To get correct SEs, do this (in a single step) using your regression

software
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Demand for cigarettes, continued

I We will estimate the regression model

ln(Qi) = β0 + β1 ln(Pi) + ln(Incomei) + ui

I We will use two (m = 2) instruments: general sales tax (Z1) and
cigarette specific tax (Z2).

I Suppose income is exogenous (this is plausible ? why?), and we also
want to estimate the income elasticity:

I Endogenous variable: ln(Pi), so k = 1
I Since (m > k), β1 is over-identified.
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Example: Cigarette demand, one instrument
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Example: Cigarette demand, two instruments

I Smaller SEs for m = 2. Using 2 instruments gives more information
I Low income elasticity (not a luxury good), though insignificantly
I Surprisingly high price elasticity
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TSLS with Multiple Endogenous Regressors

Idea is exactly the same as the case with k = 1. Just apply Step 1 for all
endogenous variables.
I Consider the regression model;

Yi = β0 + β1X1i + . . .+ βk Xki + βk+1W1i + . . .+ βk+r Wri + ui

I We have m instruments: Z1, . . . ,Zm with m ≥ k .

Stage 1: Regress each of X1, . . . ,Xk on all the exogenous regressors
(W1, . . . ,Wr ) and (Z1, . . . ,Zm), and an intercept, by OLS.
Obtain predicted values X̂1 . . . , X̂k

Stage 2: Regress Y on X̂1 . . . , X̂k , (W1, . . . ,Wr ), and an intercept, by OLS
I To get correct SEs, do this (in a single step) using your regression

software
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The General Instrument Validity Assumptions

Yi = β0 + β1X1i + . . .+ βk Xki + βk+1W1i + . . .+ βk+r Wri + ui

1. Instrument relevance:
I General case, multiple X ’s: Suppose the second stage regression could be

run using the predicted values from the population first stage regression.
Then: there is no perfect multicollinearity in this (infeasible) second stage
regression.

I Special case of one X: the general assumption is equivalent to (a) at least
one instrument must enter the population first stage regression, and (b) the
W’s are not perfectly multicollinear.

2. Instrument exogeneity: corr(Z1i , ui) = 0, . . . , corr(Zmi , ui) = 0
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The IV Regression Assumptions

Yi = β0 + β1X1i + . . .+ βk Xki + βk+1W1i + . . .+ βk+r Wri + ui

1. E(ui |W1i , . . . ,Wri) = 0. That is, Ws are really exogenous.

2. (Yi ,X1i , . . . ,Xki ,W1i , . . . ,Wri ,Z1i , . . . ,Zmi) are i.i.d.

3. The X ’s, W ’s, Z ’s, and Y have nonzero, finite 4th moments

4. The instruments (Z1i , . . . ,Zmi) are valid.

I Under 1-4, TSLS and its t-statistic are normally distributed
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Checking Instrument Validity (SW Section 12.3)

Recall the two requirements for valid instruments:

1. Relevance (special case of one X ):
At least one instrument must enter the population first stage regression.

2. Exogeneity:
All the instruments must be uncorrelated with the error term
corr(Z1i , ui) = 0, . . . , corr(Zmi , ui) = 0

I What happens if one of these requirements is not satisfied? How can
you check? What do you do?

I If you have multiple instruments, which should you use?
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Checking Instrument Relevance

I We will focus on a single included endogenous regressor:

Yi = β0 + β1Xi + β2W1i + . . .+ β1+r Wri + ui

I First stage regression:

Xi = π0 + π1Z1i + . . .+ πmZmi + πm+1W1i + . . .+ πm+k Wki + ui

I The instruments are weak if π1, . . . , πm are all either zero or nearly zero.
I When the instruments are weak, the usual methods for statistical

inference are misleading even if n is large.

30 / 49



Checking Instrument Relevance

I First stage regression:

Xi = π0 + π1Z1i + . . .+ πmZmi + πm+1W1i + . . .+ πm+k Wki + ui

I We consider the hypothesis that all instruments are not relevant, i.e.,
π1 = · · · = πm = 0

I Rule of Thumb:
I Compute F -statistic for H0 : π1 = · · · = πm = 0
I We do not worry about weak instruments if the first stage F statistic >10.
I Why 10? See Appendix 12.5.

I What do we do if instruments are weak?
I When overidentified (m > k ), discard weak instruments.
I When m = k , find stronger instruments (or use a correct inference

procedure, but this is beyond scope of the course!)
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Checking Instrument Exogeneity

1. Case of exact-identification (m = k ): there is no way to statistically test
the assumption of instrument exogeneity.
I necessary to use expert judgment based on personal knowledge

2. Case of over-identification (m > k ):
I There is no way to statistically test instrument exogeneity for all instruments
I But, if some of instruments are certainly exogenous, we can test exogeneity

of the other instruments.
I This test is called the overidentifying restrictions test.

I Idea of overidentifying restrictions test: (k = 1 and m = 2)
I Z1 is exogenous for sure and want to test Z2.
I Suppose that β̂TSLS uses only Z1 and β̃TSLS uses only Z2.
I We know β̂TSLS p→ β for sure. If Z2 is exogenous, it should be β̃TSLS p→ β
I So, β̃TSLS is very different from β̂TSLS , it is evidence against exogeneity of

Z2.
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Overidentifying Restrictions Test (The J-Statistic)

I Overidentifying restrictions test carries out this idea implicitly. Ideally,
want to test corr(u,Z ) = 0, but u is unobservable. So, we use

ûTSLS := Yi−(β̂TSLS
0 + β̂TSLS

1 X1+ · · ·+ β̂TSLS
k Xk + β̂

TSLS
k+1 W1+ · · ·+ β̂TSLS

k+r Wr )

where we use the original regressors (X ) not the predicted ones (X̂ )
I Test procedure (choose a significance level α first):

I Use OLS to estimate the coefficients in

ûTSLS = δ0 + δ1Z1 + · · ·+ δmZm + δm+1W1 + · · ·+ δm+r Wr + e

I If corr(Zj , u) = 0 for all j = 1, . . . ,m, we must have δ1 = · · · = δm = 0
I Compute homoskedasticity-only F-statistic testing H0 : δ1 = · · · = δm = 0.
I Then, compute the J statistic J := mF ∼ χ2

m−k .
I Reject H0 if J > critical value at α: see the prob table of χ2

m−k
Or, reject H0 if p-value < your significance level α.
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Overidentifying Restrictions Test (The J-Statistic)

J := mF ∼ χ2
m−k

I Here, m − k is the degree of freedom = #. of over-identifying restrictions.
I Rejecting H0 ⇒ we have statistical evidence against H0 at the chosen α.

So, at least one of Zs may not be exogenous.
I The J statistic for Heteroskedastic errors is given in SW Section 19.7.
I When m = k , J = 0, always!
I This makes sense: there is no way to test exogeneity of instruments if

exactly identified.
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Application: Demand for Cigarettes (SW Section 12.4)

I Why are we interested in knowing the elasticity of demand for cigarettes?
I Theory of optimal taxation.

I optimal tax rate ∝ 1/price elasticity
I if demand is highly sensitive to price change, the tax rate should be small.

I Negative externalities – the government should intervene to reduce
smoking
I health effects of second-hand smoke? (non-monetary)
I monetary externalities

I Panel Data on 48 US states (1985-1995): annual cigarette consumption,
average prices, income, tax rates (cigarette specific, general commodity)

35 / 49



Fixed Effects model of cigarette demand

Regression model:

ln(Qit) = αi + β1 ln(Pit) + β2 ln(Incomeit) + uit

where i = 1, . . . , 48 and t = 1985, . . . , 1995
I State FE, αi , reflects unobserved omitted factors that vary across states

but not over time, e.g. attitude towards smoking
I Even after controlling for the FE, corr(ln(Pit), uit) is plausibly nonzero

because of supply/demand interactions
I So, use TSLS to handle simultaneous causality bias
I However, the demand for addictive products like cigarettes might be

inelastic in the short run. That is, the short-run elasticity ≈ 0.
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The “Change” Method, T = 2

I So, we use T = 2 only with 1985 and 1995 (“changes” method) to focus
on the long-term response, not short-term dynamics

I Regression equations for t = 1985 and 1995;

ln(Qi,85) = αi + β1 ln(Pi,85) + β2 ln(Incomei,85) + ui,85

ln(Qi,95) = αi + β1 ln(Pi,95) + β2 ln(Incomei,95) + ui,95

I Difference:

[ln(Qi,95)− ln(Qi,85)] =β1[ln(Pi,95)− ln(Pi,85)]

β2[ln(Incomei,95)− ln(Incomei,85)] + (ui,95 − ui,85)

I Equivalently,

ln

(
Qi,95

Qi,85

)
= β1 ln

(
Pi,95

Pi,85

)
+ β2 ln

(
Incomei,95

Incomei,85

)
+ ei

where ei := ui,95 − ui,85.
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Stata: Cigarette Demand

I First, define variables;
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One instrument, Z1 = general sales tax only
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Instrument relevance: First Stage F statistic > 10 ?
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Two Instruments, adding Z2 = cigarette specific tax only
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First-stage F – both instruments
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Test the overidentifying restrictions
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Test the overidentifying restrictions

I Recall that J = m × F = 2× 2.47 = 4.94. which is distributed as χ2
2−1 if

both instruments are exogenous H0

I The critical value at 5% level is 3.84 (see the prob table of χ2

distributions)
I Hence, we reject H0 ⇒ at least one of the instruments is not exogenous.

The J-test doesn’t tell us which! You must exercise judgment...
I Z2 (cig-only tax) can be endogenous, e.g., lots of smokers (high u) could

have political power to keep Z2 at a low level.
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Estimation Results

I Elasticity=0.94: a 1% increase in prices ↓↓ cigarette sales by 0.94%.
I Increased taxes can substantially discourage cigarette consumption, at

least in the long run
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Where Do Valid Instruments Come From? (SW Section 12.5)

The hard part of IV analysis is finding valid instruments
I Method 1: economic theory

I Find a variable Z that shifts only the supply curve. Then, Z is an IV for
estimation of demand.

I For example, rainfalls in Europe would changes butter production but don’t
change demand for butter in US

I Method 2: exogenous source of variation in X
I look for exogenous variation (Z ) that is “as if” randomly assigned (does not

directly affect Y ) but affects X
I This approach requires knowledge of the problem being studied and careful

attention to the details of data
I Some examples follow
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Example 1: Does putting criminals in jail reduce crime?

I Answer should be ‘YES’, but question is how much? How much the
crime rate would decrease when the prison population increases by 1%?

I Variables in regression analysis using state data, e.g., i = 1, . . . , 48.
I Yi : crime rate
I Xi : incarceration rate, β1
I Wi : control variables (economic conditions and demographics)

I Estimating β1 by OLS might suffer simultaneity bias. i.e., Y causes X
I the simultaneity bias cannot be solved by better controls.
I but a good instrument can fix this problem

I Potential instrument Z : prison capacity for each i
I Relevance: small Z → release criminals→ large X , so corr(Z ,X) 6= 0.
I Exogeneity: Z would not directly affect Y , so corr(Z , u) = 0.

47 / 49



Example 2: Does aggressive treatment of heart attacks prolong lives?

I Variables in regression analysis, patients are indexed by i = 1, . . . , n.
I Yi : survival time (days) after heart attack
I Xi : dummy for cardiac catheterization, β1 (putting a tube into a blood vessel)
I Wi : control variables (age, weight, other variables), correlated with mortality

I OLS estimate for β1 suffers bias: Xi = 1 is a decision of the patient &
doctor in part based on unobserved factors. So, corr(Xi , ui) 6= 0.

I A potential instrument Z : distance from patient i ’s home to the nearest
cardiac catheterization hospital
I Relevance: smaller Z → easier to get treatment X = 1, so corr(Z ,X) 6= 0.
I Exogeneity: Z would not directly affect Y , so corr(Z , u) = 0.
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Conclusion (SW Section 12.6)

I A valid instrument lets us isolate a part of X that is uncorrelated with u,
and that part can be used to estimate the effect of a change in X on Y

I IV regression hinges on having valid instruments:
I Relevance: Check via first-stage F , rule of thumb F > 10
I Exogeneity: Test overidentifying restrictions via the J-statistic

I A valid instrument isolates variation in X that is “as if” randomly
assigned.

I The critical requirement of at least m valid instruments cannot be tested
– you must use your head.
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