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Outline

I OLS with many regressors
I Ridge regression and LASSO
I Principal components analysis
I Application to prediction of school test scores
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What is “Big Data”?

“Big Data” means many things:
I Data sets with many observations (millions).
I Data sets with many variables (thousands, or more).
I Data sets with nonstandard data types, like text, voice, or images.

“Big Data” also has many different applications:
I Prediction using many predictors.

I Given your browsing history, what products are you going to buy?
I Given your loan application profile, how likely are you to repay?

I Prediction using highly nonlinear models (need many observations).
I Recognition problems, like facial and voice recognition.
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What is “Big Data”?

“Big Data” has different jargon, which makes it seem very different than
statistics and econometrics
I Machine learning: when a computer (machine) uses a large data set to

learn (e.g., about your online shopping preferences)

But at its core, machine learning builds on familiar tools of prediction. This
chapter focuses on one of the major big data applications, prediction with
many predictors. We treat this as a regression problem, but with many
predictors we need new methods that go beyond OLS.

For prediction, we do not need – and typically will not have – causal effects
(coefficients) to estimate.
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The Many-Predictor Problem

The many-predictor problem:

I The goal is to provide a good prediction of some outcome variable Y
given a large number of X ’s, when the number of X ’s (k ) is large relative
to the number of observations (n) – in fact, maybe k > n!

I The goal is good out-of-sample prediction.
I The estimation sample is the n observations used to estimate the prediction

model.
I The prediction is made using the estimated model, for an out-of-sample

(OOS) observation – an observation not in the estimation sample.
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The Predictive Regression Model

The standardized predictive regression model is the linear model, with the
exception that all the X ’s are normalized (standardized) to have a mean of
zero and a standard deviation of one, and Y is deviated from its mean:

Y = β1X1 + · · ·+ βk Xk + u (1)

I Assume E [Y |X1, ...,Xk ] = β1X1 + · · ·+ βk Xk , so E [u|X1, ...,Xk ] = 0.

I Because all the variables, including Y , are deviated from their means,
the intercept is zero – so is omitted from (1).

I (1) allows for the X ’s being squares, cubes, logs, interactions, etc.

I Throughout this lecture, we use standardized X ’s, demeaned Y ’s, and
the standardized predictive regression model (1).
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The Mean Squared Prediction Error

The Mean Squared Prediction Error (MSPE) is the expected value of the
squared error made by predicting Y for an observation not in the estimation
data set:

MSPE = E [Y OOS − Ŷ (X OOS)]2

I Y is the variable to be predicted.
I X denotes the k variables used to make the prediction, (X OOS , Y OOS) are

the values of X and Y in the out-of-sample data set.
I The prediction Ŷ (X OOS) uses a model estimated using the estimation

data set, evaluated at X OOS .

The MSPE measures the expected quality of the prediction made for an OOS
observation. We use MSPE as a measure of predictive accuracy.
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The First Least Squares Assumption for Prediction

For prediction, it does not matter whether model coefficients have a causal
interpretation – so we do not need the first least squares assumption for
causal inference, which is defined in terms of a causal effect.
I In the predictive model (1), β is defined to be the coefficient in the

(linear) conditional expectation, E [Y |X ].

But it does matter that data for which we will be making the prediction is
similar to the data used to estimate the model:

The First Least Squares Assumption for Prediction

(X OOS , Y OOS) are drawn from the same distribution as the estimation sample,
(Xi ,Yi), i = 1, ..., n.
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The Oracle Prediction

The oracle prediction is the best-possible prediction – the prediction that
minimizes the MSPE – if you knew the joint distribution of Y and X .

It is easy to show that the oracle prediction is the conditional expectation,
E(Y OOS |X = X OOS).
I E(Y OOS |X = X OOS) is not a feasible prediction as it is unknown (true

population regression parameter).
I It is the benchmark against which to judge all feasible predictions.

In this lecture we focus on prediction based on linear model. We adopt the
usual linear regression assumption:

E [Y |X ] =
k∑

j=1

βjXj and E [u|X ] = 0
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The MSPE for the Predictive Regression Model

OOS value of Y : Y OOS = β1X OOS
1 + · · ·+ βk X OOS

k + uOOS .

Prediction: Ŷ OOS = β̂1X OOS
1 + · · ·+ β̂k X OOS

k .

Prediction error:

Y OOS − Ŷ OOS = (β1 − β̂1)X OOS
1 + · · ·+ (βk − β̂k )X OOS

k + uOOS

Let E(uOOS)2 = σ2
u . The MSPE for the predictive regression model is

MSPE = σ2
u + E [(β̂1 − β1)X OOS

1 + · · ·+ (β̂k − βk )X OOS
k ]2

The term σ2
u is the MSPE of the oracle forecast – cannot be beat!

The second term is the squared bias of the prediction error, which arises
because the β’s are unknown, so must be estimated using the estimation
sample.
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The MSPE of OLS

Suppose the β’s are estimated by OLS. In the standardized predictive
regression model, the MSPE of OLS is approximately

MSPEOLS ≈ (1 + k/n)σ2
u

This approximation holds if u is homoskedastic and k/n is small.
I For a given n, the MSPE of OLS increases linearly with the number of

predictors. A big problem with many predictors!
I As OLS is unbiased, MSPEOLS = V (β̂OLS).
I Is there an estimator for which the MSPE increases more slowly than

OLS, as more predictors are added?
I We need such an estimator for hundreds or thousands of predictors.
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The Principle of Shrinkage

James and Stein (1961) developed the first estimator that achieved this goal,
which could reduce the MSPE, relative to OLS, by allowing the estimator to
be biased in the right way.

I When the X ’s are uncorrelated, these estimators are biased towards
zero – or “shrunk” towards zero – and have the form,

β̂JS = cβ̂OLS

where 0 < c < 1 and “JS” stands for James-Stein.
I But how could introducing bias possibly help?
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The Principle of Shrinkage

The James-Stein shrinkage estimator:

β̂JS = cβ̂OLS

where 0 < c < 1.

As c gets smaller:
I The squared bias of the estimator increases.
I But the variance decreases.
I This produces a bias-variance trade-off. If k is large, the benefit of

smaller variance can beat out the cost of larger bias, for the right choice
of c – thus reducing the MSPE.

The estimators introduced below all have a shrinkage interpretation.

13 / 43



Estimating the MSPE

The MSPE is a bit tricky to estimate – it is not just the regression SER, it is for
an out-of-sample, not in-sample, observation.

Split-Sample Estimation of the MSPE

This method simulates the out-of-sample prediction exercise – but using only
the estimation sample (which is all you have!):

1. Estimate the model using half the estimation sample.

2. Use the estimated model to predict Y for the other half of the data –
called the “reserve” or “test” sample – and calculate the prediction error.

3. Estimate the MSPE using the prediction errors for the test sample:

M̂SPEsplit-sample =
1

ntest

∑
obs in test subsample

(Yi − Ŷi)
2
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Estimating the MSPE by m-Fold Cross Validation

The split-sample estimate typically overstates the MSPE because the model
is estimated on only 50% of the data.

This problem is reduced by using m-fold cross validation.

m-Fold Cross Validation (m = 10)

1. Estimate the model on 90% of the data and use it to predict the
remaining 10%.

2. Repeat this on the remaining 9 possible subsamples (so there is no
overlap on the test samples).

3. Estimate the MSPE using the full set of out-of-sample predictions.

Details on this algorithm in Key Concept 14.1.
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Ridge Regression

The ridge regression estimator minimizes the penalized sum of squares

SRidge(b;λRidge) =
n∑

i=1

(Yi − b1X1i − · · · − bk Xki)
2

︸ ︷︷ ︸
(1)

+ λRidge

k∑
j=1

b2
j︸ ︷︷ ︸

(2)

where λRidge ≥ 0 is called the shrinkage parameter.

I (1) is the usual sum of squared residuals.
I (2) is called a penalty term as it penalizes the estimator for choosing a

large estimate of β.
I (1) + (2) is called the penalized sum of squared residuals.
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Ridge Regression

The penalty term shrinks the ridge estimator toward 0, and the magnitude of
shrinkage depends on the value of λRidge.
I λRidge = 0, ridge estimator = OLS estimator
I Larger λRidge =⇒ greater penalty =⇒ greater shrinkage toward 0.

Ridge estimator vs. OLS estimator
I Both ridge and OLS estimator have closed-form expressions.
I The presence of the penalty term introduces bias into the ridge

estimator, but OLS is unbiased.
I Ridge regression can result in large improvements in MSPE compared

to OLS by reducing the variance of the estimator.
I When k > n, ridge estimator can be computed, but OLS is infeasible

(perfect multicollinearity).
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Ridge Regression in a Picture
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Choosing the Ridge Regression Penalty Factor

It would seem natural to choose λRidge by minimizing (b, λRidge) – but doing so
would choose λRidge = 0, which reduces to OLS! Instead, we...

Choose λRidge using m-Fold CV

1. Choose a candidate value of λRidge, say λ(1).

2. Apply the procedure described in Key Concept 14.1 to ridge regression

with λRidge = λ(1), and obtain the m-fold cross validation MPSE, M̂PSE
(1)

.

3. Repeat steps 1-2 for candidate values of λRidge, λ(2), ..., λ(L), and obtain

M̂PSE
(2)
, ..., M̂PSE

(L)
.

4. An estimator of λRidge is the one in (λ(1), ..., λ(L)) that gives the smallest

m-fold CV MPSE among (M̂PSE
(1)
, ..., M̂PSE

(L)
).
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Example: Predicting School-level Test Scores

Data set: a school-level version of the California elementary district data set,
augmented with additional variables describing school, student, and district
characteristics.

The full data set has 3932 observations. Half of those (1966) are used now –
the remaining 1966 are reserved for an out-of-sample comparison of the
ridge and other prediction methods, done later.

The data set has 817 predictors...

λRidge is estimated by minimizing the 10-fold cross-validated MSPE.

The resulting estimate of the shrinkage parameter is λ̂Ridge = 2233.

Root MSPE’s: OLS = 78.2, Ridge = 39.5.

Ridge results cuts the square root of the MSPE in half, compared to OLS!
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Predicting School-level Test Scores: Ridge Regression
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The Lasso

The Lasso estimator shrinks the estimate towards zero by penalizing large
absolute values of the coefficients.

The Lasso estimator minimizes a penalized sum of squares, where the
penalty term is the sum of the absolute values of the coefficients:

SLasso(b;λLasso) =
n∑

i=1

(Yi − b1X1i − · · · − bk Xki)
2 + λLasso

k∑
j=1

|bj |

where λLasso ≥ 0 is called the Lasso shrinkage parameter.

This looks a lot like ridge estimation – but it turns out to have very different
properties...
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Shrinkage Using the Lasso

Both ridge and Lasso shrink estimated coefficients to 0. However,
I When |bj | > 1, |bj | < b2

j ⇒ ridge penalty > Lasso penalty, and so ridge
shrinks (toward 0) more than Lasso.

I When |bj | < 1, |bj | > b2
j ⇒ ridge penalty < Lasso penalty, and so Lasso

shrinks more than ridge, and in many cases, all the way to 0.

Unlike ridge, Lasso provides a way to select predictors and then estimate
their coefficients with a modest amount of shrinkage.
I Lasso sets many of the estimated coefficients exactly 0, thereby

dropping corresponding predictors from the model. This property gives
the Lasso its name: the Least Absolute Selection and Shrinkage
Operator (LASSO).

I The predictors selected by Lasso are subject to less shrinkage than with
ridge.
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Lasso in Pictures

(a) Lasso shrinks large β less than ridge (b) Lasso shrinks small β all the way to 0

Thus, the Lasso estimator sets some – many – of the β’s exactly to 0.
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More on Lasso

In some applications, only a few predictors might be useful, with the rest
irrelevant.

In a regression model, irrelevant predictors have zero coefficients. A
regression model in which the coefficients are nonzero for only a small
fraction of the predictors is called sparse model.

Lasso can work especially well when in reality many of the predictors are
irrelevant.

Lasso produces sparse models, and works well when the population model is
in fact sparse.
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More on Lasso

Lasso can be used to models with k > n (like ridge).

Unlike ridge or OLS, Lasso estimator has no closed-form expression. The
Lasso minimization must be done numerically.

λLasso can be selected using the same m-fold CV algorithm.

Technically, Lasso predictions are not invariant to linear transformations of
the regressors, i.e., the estimated model, and selected variables, depends on
how the variables are specified.

For example, if model A uses the intercept and a dummy variable for female;
and model B uses both female dummy and male dummy but no intercept,
then Lasso (and ridge) will in general give different predictions for models A
and B, although OLS will give the same predictions.
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Predicting School-level Test Scores: Lasso

λ̂Lasso = 4527 is estimated by minimizing the 10-fold CV MSPE.

Root MSPE’s: OLS = 78.2, Ridge = 39.7.

The Lasso estimator retains only 56 of the 817 predictors.
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Principal Components

Ridge and Lasso reduce the MSPE by shrinking (biasing) the estimated
coefficients to zero – and in the case of Lasso, by eliminating many of the
regressors entirely.

Instead, Principal components regression collapses the very many predictors
into a much smaller number (p � k ) of linear combinations of the predictors.

These the linear combinations – called the principal components (PC) of X –
are computed so that they capture as much of the variation in the original X ’s
as possible.

Because the number p of principal components is small, OLS can be used,
with the principal components as (new) regressors.
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Principal Components in Pictures, k = 2

Suppose you have 2 X ’s, and you want to choose a linear combination of
those X ’s (say, aX1 + bX2) that captures as much of the variation of the X ’s
as possible. What values of a and b would you use?

The Principal Components solution is to choose a and b to solve,
maxV (aX1 + bX2) subject to a2 + b2 = 1.

For 2 X ’s positively correlated, the choices of a and b are a = b =
√

2/2.
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Principal Components, k > 2

When k > 2, the principal components are the linear combinations of the X ’s
that have the greatest variance and that are uncorrelated with the previous
principal components.

So, the j th principal component PCj , solves,

maxV (
k∑

i=1

ajiXi) subject to
k∑

i=1

a2
ji = 1

and subject PCj to being uncorrelated with PC1, ...,PCj−1.

The first p principal components are the linear combinations of X that capture
as much of the variation in X as possible.
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Principal Components as Data Compression

Principal components can be thought of as a data compression tool, so that
the compressed data have fewer regressors with as little information loss as
possible.

Data compression is used all the time to reduce very large data sets to
smaller ones. A familiar example is image compression, where the goal is to
retain as many of the features of the image (photograph) as possible, while
reducing the file size.

In fact, many data compression algorithms build on or are cousins of principal
components analysis.
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How Many Principal Components?

One way to choose p is to plot the increase in the average R2 resulting from
adding the pth PC to a regression of X on PC1, ...,PCp−1. This plot is known
as a scree plot.

The 1st PC explains 18% of the variation in the 817 X ’s! The first 10 PC’s
explain 63% of the variation in the 817 X ’s! Still, it is rather hard to know
where to draw the line...
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How Many Principal Components?

The scree plot is informative (you should look at it) but does not provide a
simple rule for choosing p.

I The number of principal components p is like the ridge and Lasso
penalty factors λRidge and λLasso - all are additional parameters needed to
implement the procedure.

I Like λRidge and λLasso, p can be estimated by minimizing the m-fold CV
estimate of the MSPE.
I For a given value of p, the principal components forecast is obtained by

regressing Y on PC1, ...,PCp−1 using the estimation sample, then using
that model to predict in the test sample.
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Predicting School-level Test Scores: Principal Components

p̂ = 46 is estimated by minimizing the 10-fold CV MSPE.

Root MSPE’s: OLS = 78.2, PC = 39.7.

PC collapses the 817 predictors to 46.
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Application to School Test Scores

Data set
I Half the observations (1966) used for model estimation including

estimation of λRidge, λLasso, and p.
I The other half is reserved for an OOS test, comparing the various

forecasts.
I Three sets of predictors are used:

I Small (k = 4): Student-teacher ratio, median local income, teacher’s
average years of experience, instructional expenditures per student.

I Large (k = 817): The regressors used up to now.
I Very large (k = 2065): Additional school and demographic variables,

squares and cubes, and interactions. For the large data set, k > n!
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Application to School Test Scores
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Application to School Test Scores
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Application to School Test Scores
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Application to School Test Scores
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Application to School Test Scores
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Application to School Test Scores

For these data, the predictions made by Ridge, Lasso, and principal
components are similar to each other (as shown in these scatterplots),
however they are quite different from the (worse) OLS predictions.
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Summary

I With many predictors, OLS will produce poor OOS predictions.

I By introducing the right type of bias – shrinkage towards 0 – the variance
of the prediction can be reduced by enough to offset the bias and result
in smaller MSPE.

I Ridge and Lasso reduce the MSPE by shrinking the estimated
coefficients to 0 – and in the case of Lasso, by eliminating many of the
regressors entirely.

I Principal components collapses X into fewer uncorrelated linear
combinations that capture as much of the variation of the X ’s as
possible. Predictions are then made using the OLS regression of Y on
the principal components.
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Summary

I All three methods require an additional parameter: λRidge for Ridge,
λLasso for Lasso, and p for principal components. This parameter can be
estimated by minimizing the m-fold CV estimate of the MSPE.

I The different methods have strengths in different situations, and which
works best in a given application is an empirical question.
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