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Outline

I The population linear regression model (LRM)
I The ordinary least squares (OLS) estimator and the sample regression

line
I Measures of fit of the sample regression
I The least squares assumptions
I The sampling distribution of the OLS estimator
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Linear Regression

I Linear regression lets us estimate the slope of the population regression
line.

I The slope of the population regression line is the expected effect on Y of
a unit change in X .

I Ultimately our aim is to estimate the causal effect on Y of a unit change
in X – but for now, just think of the problem of fitting a straight line to data
on two variables, Y and X .
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Linear Regression

I The problem of statistical inference for linear regression is, at a general
level, the same as for estimation of the mean or of the differences
between two means.

I Statistical, or econometric, inference about the slope entails:
I Estimation:

How should we draw a line through the data to estimate the population
slope? Answer: ordinary least squares (OLS).
What are advantages and disadvantages of OLS?

I Hypothesis testing:
How to test if the slope is zero?

I Confidence intervals:
How to construct a confidence interval for the slope?
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The Linear Regression Model SW Section 4.1

I The population regression line:

Test Score = β0 + β1 STR

I β1 = slope of population regression line
= change in test score for a unit change in student-teacher ratio (STR)

I Why are β0 and β1 “population” parameters?
I We would like to know the population value of β1.
I We don’t know β1, so must estimate it using data.
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The Population Linear Regression Model

Consider
Yi = β0 + β1Xi + ui

for i = 1, . . . , n
I We have n observations, (Xi ,Yi), i = 1, .., n.
I X is the independent variable or regressor or right-hand-side variable
I Y is the dependent variable or left-hand-side variable
I β0 = intercept
I β1 = slope
I ui = the regression error
I The regression error consists of omitted factors. In general, these

omitted factors are other factors that influence Y , other than the variable
X . The regression error also includes error in the measurement of Y .
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The population regression model in a picture

I Observations on Y and X (n = 7); the population regression line; and
the regression error (the “error term"):
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The Ordinary Least Squares Estimator (SW Section 4.2)

I How can we estimate β0 and β1 from data? Recall that was the least
squares estimator of µY : solves, Y

min
m

n∑
i=1

(Yi −m)2

I By analogy, we will focus on the least squares (“ordinary least squares”
or “OLS”) estimator of the unknown parameters β0 and β1. The OLS
estimator solves,

min
b0,b1

n∑
i=1

[Yi − (b0 + biXi)]
2

I In fact, we estimate the conditional expectation function E [Y |X ] under
the assumption that E [Y |X ] = β0 + β1X

8 / 28



Mechanics of OLS

I The population regression line:

Test Score = β0 + β1 STR
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Mechanics of OLS

I The OLS estimator minimizes the average squared difference between
the actual values of Yi and the prediction (“predicted value”) based on
the estimated line.

I This minimization problem can be solved using calculus (Appendix 4.2).
I The result is the OLS estimators of β0 and β1.
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OLS estimator, predicted values, and residuals

I The OLS estimators are

β̂1 =

∑n
i=1(Xi − X )(Yi − Y )∑n

i=1(Xi − X )2

β̂0 = Y − β̂1X

I The OLS predicted (fitted) values Ŷi and residuals ûi are

Ŷi = β̂0 + β̂1Xi

ûi = Yi − Ŷi

I The estimated intercept, β̂0, and slope, β̂1, and residuals ûi are
computed from a sample of n observations (Xi ,Yi) i = 1, . . . , n.

I These are estimates of the unknown population parameters β0 and β1.
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Predicted values & residuals

I One of the districts in the data set is Antelope, CA, for which
STR = 19.33 and TestScore = 657.8

predicted value: = 698.9− 2.28× 19.33 = 654.8

residual: = 657.8− 654.8 = 3.0
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OLS regression: Stata output
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Measures of fit Section 4.3

I Two regression statistics provide complementary measures of how well
the regression line “fits” or explains the data:

I The regression R2 measures the fraction of the variance of Y that is
explained by X ; it is unit free and ranges between zero (no fit) and one
(perfect fit)

I The standard error of the regression (SER) measures the magnitude of
a typical regression residual in the units of Y .
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Regression R2

I The sample variance of Yi =
1
n

∑n
i=1(Yi − Y )2

The sample variance of Ŷi =
1
n

∑n
i=1(Ŷi − Ŷ )2, where in fact Ŷ = Y .

R2 is simply the ratio of those two sample variances.
I Formally, we define R2 as follows (two equivalent definitions);

R2 :=
Explained Sum of Squares (ESS)

Total Sum of Squares (TSS)
=

∑n
i=1(Ŷi − Y )2∑n
i=1(Yi − Y )2

R2 := 1− Residual Sum of Squares (RSS)
Total Sum of Squares

= 1−
∑n

i=1 û2
i∑n

i=1(Yi − Y )2

I R2 = 0⇐⇒ ESS = 0 and R2 = 1⇐⇒ ESS = TSS. Also, 0 ≤ R2 ≤ 1
I For regression with a single X ,

R2 = the square of the sample correlation coefficient between X and Y
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The Standard Error of the Regression (SER)

I The SER measures the spread of the distribution of u. The SER is
(almost) the sample standard deviation of the OLS residuals:?

SER :=

√√√√ 1
n − 2

n∑
i=1

û2
i

I The SER:
I has the units of ui , which are the units of Yi
I measures the average “size” of the OLS residual (the average “mistake”

made by the OLS regression line)

I The root mean squared error (RMSE) is closely related to the SER:

RMSE :=

√√√√1
n

n∑
i=1

û2
i

I When n is large, SER ≈ RMSE.1

1Here, n − 2 is the degrees of freedom – need to subtract 2 because there are two parameters
to estimate. For details, see section 18.4.
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Example of the R2 and the SER

I TestScore = 698.9− 2.28× STR, R2 = 0.05, SER = 18.6
I STR explains only a small fraction of the variation in test scores.

I Does this make sense?
I Does this mean the STR is unimportant in a policy sense?
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Least Squares Assumptions (SW Section 4.4)

I What, in a precise sense, are the properties of the sampling distribution
of the OLS estimator? When will it be unbiased? What is its variance?

I To answer these questions, we need to make some assumptions about
how Y and X are related to each other, and about how they are collected
(the sampling scheme)

I These assumptions – there are three – are known as the Least Squares
Assumptions.
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Least Squares Assumptions (SW Section 4.4)

Yi = β0 + β1Xi + ui , i = 1, . . . , n

1. The conditional distribution of u given X has mean zero, that is,
E(u|X = x) = 0.
I This implies that OLS estimators are unbiased

2. (Xi ,Yi), i = 1, · · · , n, are i.i.d.
I This is true if (X ,Y ) are collected by simple random sampling
I This delivers the sampling distribution of β̂0 and β̂1

3. Large outliers in X and/or Y are rare.
I Technically, X and Y have finite fourth moments
I Outliers can result in meaningless values of β̂1
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Least squares assumption #1: E(u|X = x) = 0.

For any given value of X , the mean of u is zero:

Example: TestScorei = β0 + β1STRi + ui , ui = other factors
I What are some of these “other factors”?
I Is E(u|X = x) = 0 plausible for these other factors?
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Least squares assumption #1: E(u|X = x) = 0 (continued)

I A benchmark for thinking about this assumption is to consider an ideal
randomized controlled experiment:

I X is randomly assigned to people (students randomly assigned to
different size classes; patients randomly assigned to medical
treatments). Randomization is done by computer – using no information
about the individual.

I Because X is assigned randomly, all other individual characteristics –
the things that make up u – are distributed independently of X , so u and
X are independent

I Thus, in an ideal randomized controlled experiment, E(u|X = x) = 0
(that is, LSA #1 holds)

I In actual experiments, or with observational data, we will need to think
hard about whether E(u|X = x) = 0 holds.
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Least squares assumption #2: (Xi , Yi ), i = 1, · · · , n are i.i.d.

I This arises automatically if the entity (individual, district) is sampled by
simple random sampling:
I The entities are selected from the same population, so (Xi ,Yi ) are

identically distributed for all i = 1, . . . , n.
I The entities are selected at random, so the values of (X ,Y ) for different

entities are independently distributed.

I The main place we will encounter non-i.i.d. sampling is when data are
recorded over time for the same entity (panel data and time series data)
– we will deal with that complication when we cover panel data.

22 / 28



Least squares assumption #3: Large outliers are rare
Technical statement: E(X 4) <∞ and E(Y 4) <∞

I A large outlier is an extreme value of X or Y
I On a technical level, if X and Y are bounded, then they have finite fourth

moments. (Standardized test scores automatically satisfy this; STR,
family income, etc. satisfy this too.)

I The substance of this assumption is that a large outlier can strongly
influence the results – so we need to rule out large outliers.

I Look at your data! If you have a large outlier, is it a typo? Does it belong
in your data set? Why is it an outlier?
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OLS can be sensitive to an outlier:

I Is the lone point an outlier in X or Y?
I In practice, outliers are often data glitches (coding or recording

problems). Sometimes they are observations that really shouldn’t be in
your data set. Plot your data before running regressions!
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The Sampling Distribution of the OLS Estimator (SW Section 4.5)

The OLS estimator is computed from a sample of data. A different sample
yields a different value of β̂1. This is the source of the “sampling uncertainty”
of β̂1. We want to:
I quantify the sampling uncertainty associated with
I use β̂1 to test hypotheses such as β1 = 0
I construct a confidence interval for β1

I All these require figuring out the sampling distribution of the OLS
estimator.
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Sampling Distribution of β̂1

I We can show that β̂1 is unbiased, i.e., E [β̂1] = β1. Similarly for β̂0.
I We do not derive V (β̂1), as it requires some tedious algebra. Moreover,

we do not need to memorize the formula of it. Here, we just emphasize
two aspects of V (β̂1).

I First, V (β̂1) is inversely proportional to n, just like V (Y n). Combining
E [β̂1] = β1, it is then suggested that β̂1

p−→ β1, i.e., β̂1 is consistent.
That is, as sample size grows, β̂1 gets closer to β1.

I Second, V (β̂1) is inversely proportional to the variance of X ; see the
graphs below.
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Sampling Distribution of β̂1

Low x variation High x variation
⇒low precision ⇒ high precision

I Intuitively, if there is more variation in X , then there is more information
in the data that you can use to fit the regression line.
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Sampling Distribution of β̂1

I The exact sampling distribution is complicated – it depends on the
population distribution of (Y ,X ) – but when n is large we get some
simple (and good) approximations:

I Let SE(β̂1) be the standard error (SE) of β̂1, i.e., a consistent estimator

for the standard deviation of β̂1 which is
√

V (β̂1)

I Then, it turns out that

β̂1 − β1

SE(β̂1)

approx∼ N (0, 1)

I Using this approximate distribution, we can conduct statistical inference
on β̂1, i.e., hypothesis testing, confidence interval⇒ Ch5.
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