ECON 7310 Elements of Econometrics Week 2: Linear Regression with One Regressor

David Du¹

¹ University of Queensland

Draft

1 / 28

メロメメ 御きメモ メモ メーモ

Outline

- \blacktriangleright The population linear regression model (LRM)
- \triangleright The ordinary least squares (OLS) estimator and the sample regression line
- \blacktriangleright Measures of fit of the sample regression
- \blacktriangleright The least squares assumptions
- \blacktriangleright The sampling distribution of the OLS estimator

Linear Regression

- \blacktriangleright Linear regression lets us estimate the slope of the population regression line.
- ► The slope of the population regression line is the expected effect on *Y* of a unit change in *X*.
- I Ultimately our aim is to estimate the causal effect on *Y* of a unit change in X – but for now, just think of the problem of fitting a straight line to data on two variables, *Y* and *X*.

Linear Regression

- \blacktriangleright The problem of statistical inference for linear regression is, at a general level, the same as for estimation of the mean or of the differences between two means.
- \triangleright Statistical, or econometric, inference about the slope entails:
	- \blacktriangleright Estimation: How should we draw a line through the data to estimate the population slope? Answer: ordinary least squares (OLS). What are advantages and disadvantages of OLS?
	- \blacktriangleright Hypothesis testing: How to test if the slope is zero?
	- \triangleright Confidence intervals: How to construct a confidence interval for the slope?

The Linear Regression Model sw Section 4.1

 \blacktriangleright The population regression line:

Test Score = $\beta_0 + \beta_1$ STR

 \triangleright β_1 = slope of population regression line $=$ change in test score for a unit change in student-teacher ratio (STR)

- ► Why are β_0 and β_1 "population" parameters?
- \blacktriangleright We would like to know the population value of β_1 .
- \blacktriangleright We don't know β_1 , so must estimate it using data.

The Population Linear Regression Model

Consider

$$
Y_i = \beta_0 + \beta_1 X_i + u_i
$$

for $i = 1, ..., n$

- \blacktriangleright We have *n* observations, (X_i, Y_i) , $i = 1, ..., n$.
- \triangleright *X* is the independent variable or regressor or right-hand-side variable
- ▶ *Y* is the dependent variable or left-hand-side variable
- \blacktriangleright β_0 = *intercept*
- \blacktriangleright β_1 = *slope*
- ν_i = the regression error
- \blacktriangleright The regression error consists of omitted factors. In general, these omitted factors are other factors that influence *Y*, other than the variable *X*. The regression error also includes error in the measurement of *Y*.

The population regression model in a picture

 \triangleright Observations on *Y* and *X* ($n = 7$); the population regression line; and the regression error (the "error term"):

The Ordinary Least Squares Estimator (SW Section 4.2)

► How can we estimate β_0 and β_1 from data? Recall that was the least squares estimator of μ_Y : solves, \overline{Y}

$$
\min_{m}\sum_{i=1}^{n}(Y_i-m)^2
$$

 \blacktriangleright By analogy, we will focus on the least squares ("ordinary least squares" or "OLS") estimator of the unknown parameters β_0 and β_1 . The OLS estimator solves,

$$
\min_{b_0,b_1}\sum_{i=1}^n[Y_i-(b_0+b_iX_i)]^2
$$

In fact, we estimate the conditional expectation function $E[Y|X]$ under the assumption that $E[Y|X] = \beta_0 + \beta_1 X$

メロトメ 御 メメ きょく 語 メーヨー

Mechanics of OLS

 \blacktriangleright The population regression line:

Test Score = $\beta_0 + \beta_1$ STR

Mechanics of OLS

- \blacktriangleright The OLS estimator minimizes the average squared difference between the actual values of *Yⁱ* and the prediction ("predicted value") based on the estimated line.
- \blacktriangleright This minimization problem can be solved using calculus (Appendix 4.2).
- **►** The result is the OLS estimators of β_0 and β_1 .

OLS estimator, predicted values, and residuals

 \blacktriangleright The OLS estimators are

$$
\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}
$$

$$
\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X}
$$

If The OLS predicted (fitted) values \hat{Y}_i and residuals \hat{u}_i are

$$
\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i
$$

$$
\widehat{u}_i = Y_i - \widehat{Y}_i
$$

- **I** The estimated intercept, $\widehat{\beta}_0$, and slope, $\widehat{\beta}_1$, and residuals $\widehat{\mu}_i$ are computed from a sample of *n* observations (X_i, Y_i) $i = 1, \ldots, n$.
- **ID These are estimates of the unknown population parameters** β_0 **and** β_1 **.**

Predicted values & residuals

 \triangleright One of the districts in the data set is Antelope, CA, for which *STR* = 19.33 and *TestScore* = 657.8

> predicted value: = $698.9 - 2.28 \times 19.33 = 654.8$ residual: $= 657.8 - 654.8 = 3.0$

OLS regression: Stata output

メロトメ団 トメモトメモト 一番 つへへ 13 / 28

Measures of fit Section 4.3

- \triangleright Two regression statistics provide complementary measures of how well the regression line "fits" or explains the data:
- \blacktriangleright The regression R^2 measures the fraction of the variance of Y that is explained by *X*; it is unit free and ranges between zero (no fit) and one (perfect fit)
- \triangleright The standard error of the regression (SER) measures the magnitude of a typical regression residual in the units of *Y*.

Regression *R* 2

- ▶ The sample variance of $Y_i = \frac{1}{n} \sum_{i=1}^n (Y_i \overline{Y})^2$ The sample variance of $\hat{Y}_i = \frac{1}{n} \sum_{i=1}^n (\hat{Y}_i - \hat{Y})^2$, where in fact $\hat{Y} = \overline{Y}$. R^2 is simply the ratio of those two sample variances.
- **Formally, we define** R^2 **as follows (two equivalent definitions);**

$$
R^2 := \frac{\text{Explained Sum of Squares (ESS)}}{\text{Total Sum of Squares (TSS)}} = \frac{\sum_{i=1}^n (\hat{Y}_i - \overline{Y})^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2}
$$

$$
R^2 := 1 - \frac{\text{Residual Sum of Squares (RSS)}}{\text{Total Sum of Squares}} = 1 - \frac{\sum_{i=1}^n \hat{U}_i^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2}
$$

 $P^2 = 0 \Longleftrightarrow ESS = 0$ and $R^2 = 1 \Longleftrightarrow ESS = TSS$. Also, $0 \le R^2 \le 1$

 \blacktriangleright For regression with a single X, R^2 = the square of the sample correlation coefficient between *X* and *Y*

The Standard Error of the Regression (SER)

 \triangleright The SER measures the spread of the distribution of μ . The SER is (almost) the sample standard deviation of the OLS residuals:?

$$
SER := \sqrt{\frac{1}{n-2}\sum_{i=1}^n \widehat{u}_i^2}
$$

 \blacktriangleright The SFR:

- In has the units of u_i , which are the units of Y_i
- \blacktriangleright measures the average "size" of the OLS residual (the average "mistake" made by the OLS regression line)
- \triangleright The root mean squared error (RMSE) is closely related to the SER:

$$
RMSE := \sqrt{\frac{1}{n}\sum_{i=1}^{n}\widehat{u}_i^2}
$$

 \triangleright When *n* is large, SER ≈ RMSE.¹

¹Here, $n-2$ is the degrees of freedom – need to subtract 2 because there are two parameters to estimate. For details, see section 18.4.

Example of the *R* ² and the *SER*

- I *TestScore* = 698.9 − 2.28 × *STR*, *R* ² = 0.05, *SER* = 18.6
- ▶ *STR* explains only a small fraction of the variation in test scores.
	- \blacktriangleright Does this make sense?
	- ▶ Does this mean the *STR* is unimportant in a policy sense?

Least Squares Assumptions (SW Section 4.4)

- \triangleright What, in a precise sense, are the properties of the sampling distribution of the OLS estimator? When will it be unbiased? What is its variance?
- \triangleright To answer these questions, we need to make some assumptions about how *Y* and *X* are related to each other, and about how they are collected (the sampling scheme)
- \triangleright These assumptions there are three are known as the Least Squares Assumptions.

Least Squares Assumptions (SW Section 4.4)

$$
Y_i = \beta_0 + \beta_1 X_i + u_i, \quad i = 1, \ldots, n
$$

- 1. The conditional distribution of *u* given *X* has mean zero, that is, $E(u|X = x) = 0.$
	- \blacktriangleright This implies that OLS estimators are unbiased
- 2. (X_i, Y_i) , $i = 1, \dots, n$, are i.i.d.
	- \blacktriangleright This is true if (X, Y) are collected by simple random sampling
	- ▶ This delivers the sampling distribution of $\widehat{\beta}_0$ and $\widehat{\beta}_1$
- 3. Large outliers in *X* and/or *Y* are rare.
	- \blacktriangleright Technically, *X* and *Y* have finite fourth moments
	- ▶ Outliers can result in meaningless values of $\widehat{\beta}_1$

Least squares assumption #1: $E(u|X=x) = 0$.

For any given value of *X*, the mean of *u* is zero:

Example: *TestScore*^{i} = $\beta_0 + \beta_1 STR_i + u_i$, u_i = other factors

 \blacktriangleright What are some of these "other factors"?

In Its $E(u|X = x) = 0$ plausible for these other factors?

Least squares assumption #1: $E(u|X = x) = 0$ (continued)

 \triangleright A benchmark for thinking about this assumption is to consider an ideal randomized controlled experiment:

- \triangleright *X* is randomly assigned to people (students randomly assigned to different size classes; patients randomly assigned to medical treatments). Randomization is done by computer – using no information about the individual.
- \triangleright Because X is assigned randomly, all other individual characteristics the things that make up *u* – are distributed independently of *X*, so *u* and *X* are independent
- In Thus, in an ideal randomized controlled experiment, $E(u|X = x) = 0$ (that is, LSA #1 holds)
- In actual experiments, or with observational data, we will need to think hard about whether $E(u|X = x) = 0$ holds.

Least squares assumption #2: (X_i, Y_i) , $i = 1, \dots, n$ are i.i.d.

- \blacktriangleright This arises automatically if the entity (individual, district) is sampled by simple random sampling:
	- \blacktriangleright The entities are selected from the same population, so (X_i, Y_i) are identically distributed for all $i = 1, \ldots, n$.
	- If The entities are selected at random, so the values of (X, Y) for different entities are independently distributed.
- \blacktriangleright The main place we will encounter non-i.i.d. sampling is when data are recorded over time for the same entity (panel data and time series data)
	- we will deal with that complication when we cover panel data.

```
Least squares assumption #3: Large outliers are rare
Technical statement: E(X^4)<\infty and E(Y^4)<\infty
```
- \blacktriangleright A large outlier is an extreme value of X or Y
- ▶ On a technical level, if *X* and *Y* are bounded, then they have finite fourth moments. (Standardized test scores automatically satisfy this; *STR*, family income, etc. satisfy this too.)
- \blacktriangleright The substance of this assumption is that a large outlier can strongly influence the results – so we need to rule out large outliers.
- \triangleright Look at your data! If you have a large outlier, is it a typo? Does it belong in your data set? Why is it an outlier?

OLS can be sensitive to an outlier:

If Its the lone point an outlier in X or Y ?

 \blacktriangleright In practice, outliers are often data glitches (coding or recording problems). Sometimes they are observations that really shouldn't be in your data set. Plot your data before running regressions!

The OLS estimator is computed from a sample of data. A different sample yields a different value of $\widehat{\beta}_1$. This is the source of the "sampling uncertainty" of $\hat{\beta}_1$. We want to:

- \blacktriangleright quantify the sampling uncertainty associated with
- **In use** $\widehat{\beta}_1$ to test hypotheses such as $\beta_1 = 0$
- \triangleright construct a confidence interval for β_1
- \blacktriangleright All these require figuring out the sampling distribution of the OLS estimator.

Sampling Distribution of β_1

- **►** We can show that $\widehat{\beta}_1$ is unbiased, i.e., $E[\widehat{\beta}_1] = \beta_1$. Similarly for $\widehat{\beta}_0$.
- \blacktriangleright We do not derive $V(\widehat{\beta}_1)$, as it requires some tedious algebra. Moreover, we do not need to memorize the formula of it. Here, we just emphasize two aspects of $V(\widehat{\beta}_1)$.
- First, $V(\widehat{\beta}_1)$ is inversely proportional to *n*, just like $V(\overline{Y}_n)$. Combining $E[\widehat{\beta}_1] = \beta_1$, it is then suggested that $\widehat{\beta}_1 \stackrel{p}{\longrightarrow} \beta_1$, i.e., $\widehat{\beta}_1$ is consistent. That is, as sample size grows, $\widehat{\beta}_1$ gets closer to β_1 .
- **IDE** Second, $V(\widehat{\beta}_1)$ is inversely proportional to the variance of X; see the graphs below.

Sampling Distribution of β_1

Intuitively, if there is more variation in X , then there is more information in the data that you can use to fit the regression line.

Sampling Distribution of β_1

- \blacktriangleright The exact sampling distribution is complicated it depends on the population distribution of (Y, X) – but when *n* is large we get some simple (and good) approximations:
- **IDENT** Let $SE(\widehat{\beta}_1)$ be the standard error (SE) of $\widehat{\beta}_1$, i.e., a consistent estimator for the standard deviation of $\widehat{\beta}_1$ which is $\sqrt{V(\widehat{\beta}_1)}$
- \blacktriangleright Then, it turns out that

$$
\frac{\widehat{\beta}_1 - \beta_1}{\mathsf{SE}(\widehat{\beta}_1)} \stackrel{\text{approx}}{\sim} \mathcal{N}(0, 1)
$$

 \triangleright Using this approximate distribution, we can conduct statistical inference on β_1 , i.e., hypothesis testing, confidence interval \Rightarrow Ch5.