ECON 7310 Elements of Econometrics Week 5: Assessing Studies Based on Multiple Regression

David Du¹

¹University of Queensland

Draft

<ロト<団ト<巨ト<巨ト<巨ト< 三、つへで 1/31

Outline

- Hypothesis tests and confidence intervals for one coefficient
- Joint hypothesis tests on multiple coefficients
- Other types of hypotheses involving multiple coefficients
- Variables of interest, control variables, and variable selection

Hypothesis Tests and Confidence Intervals for a Single Coefficient (SW Section 7.1)

- Hypothesis tests and confidence intervals for a single coefficient in multiple regression follow the same logic and recipe as for the slope coefficient in a single-regressor model.
- $\frac{\hat{\beta}_1 \beta_1}{SE(\hat{\beta}_1)}$ is approximately distributed $\mathcal{N}(0, 1)$.
- ► Thus hypotheses on β_1 can be tested using the usual t-statistic, and confidence intervals are constructed as $\hat{\beta}_1 \pm 1.96 \times SE(\hat{\beta}_1)$.
- The same method applies to β_2, \ldots, β_k .

Example: The California class size data

1. Single Regressor:

$$\widehat{\text{TestScore}} = 698.9 - 2.28 \quad STR \\ (10.4) \quad (0.52)$$

2. Multiple Regressors:

$$\overrightarrow{\textit{TestScore}} = \begin{array}{c} 686.0 - & 1.10STR - & 0.650PctEL \\ (8.7) & (0.43) & (0.031) \end{array}$$

- The coefficient on STR in (2) is the effect on *TestScore* of a unit change in *STR*, holding constant the percentage of English Learners
- ▶ The coefficient on STR falls by one-half. The 95% confidence interval for coefficient on STR in (2) is $-1.10 \pm 1.96 \times 0.43 = (-1.95, -0.26)$
- The *t*-statistic testing β_{STR} = 0 is t = -1.10/0.43 = -2.54, so we reject the hypothesis at the 5% significance level

Standard errors in multiple regression in STATA

req testscr str po	ctel, robu	ist;				
Regression with ro	obust stan	dard errors			Number of obs	= 420
					F(2, 417)	= 223.82
					Prob > F	= 0.0000
					R-squared	= 0.4264
					Root MSE	= 14.464
1		Robust				
testscr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
str -:	1.101296	.4328472	-2.54	0.011	-1.95213	2504616
pctel -	. 6497768	.0310318	-20.94	0.000	710775	5887786
_cons	686.0322	8.728224	78.60	0.000	668.8754	703.189
Test Score	- 696 0	1 10 4 67		ODetEl		
3)	8.7) (<mark>0</mark> .	.43)	(0.031))		
We use heterosk	edasticity	/-robust sta	andard e	rrors –	for exactly th	e same
reason as in t	the case of	of a single	rearesso	r.		

Tests of Joint Hypotheses (SW Section 7.2)

Let Expn := expenditures per student, and consider

*TestScore*_{*i*} = $\beta_0 + \beta_1 STR_i + \beta_2 Expn_i + \beta_3 PctEL_i + u_i$

The null hypothesis that "school resources do not matter," and the alternative that they do, corresponds to:

 $H_0: \beta_1 = 0$ and $\beta_2 = 0$ vs $H_1: \beta_1 \neq 0$ or $\beta_2 \neq 0$ or both

- A joint hypothesis specifies a value for two or more coefficients, i.e., it imposes a restriction on two or more coefficients simultaneously.
- ► In general, a joint hypothesis will involve *q* restrictions. In the example above, q = 2, and the two restrictions are $\beta_1 = 0$ and $\beta_2 = 0$.

Why can't we just test the coefficients one at a time?

- A "common sense" idea is to reject if either of the individual t-statistics exceeds 1.96 in absolute value.
- But this "one at a time" test is not valid: the resulting test rejects too often under the null hypothesis (more than 5%)!
- ► The "one at time" test is to reject H_0 : $\beta_1 = \beta_2 = 0$ if $|t_1| > 1.96$ and/or $|t_2| > 1.96$
- ▶ What is the probability that this "one at a time" test rejects H₀, when H₀ is actually true? (It should be 5%.) Suppose t₁ and t₂ are independent,

 $\begin{aligned} & \Pr(|t_1| > 1.96 \text{ and/or } |t_2| > 1.96 |H_0) \\ &= 1 - \Pr(|t_1| < 1.96 |H_0) \times \Pr(|t_2| < 1.96 |H_0) \\ &= 1 - (0.95)^2 \approx 9.75\% \neq 5\% \end{aligned}$

The size of the "common sense" test is not 5%! So, we will study F test.

The F-statistic

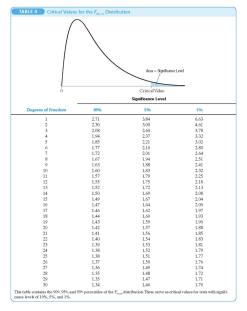
- ► The heteroskedasticity-robust *F*-statistic testing *H*₀ with *q* restrictions is approximately distributed as *F*_{q,∞} when *n* is large.
- The critical values for the *F*-statistic can be found from the tables of *F*_{q,∞}. Note that the critical values depend on *q*.
- It is more convenient to conduct the hypothesis testing using p value

$$p$$
-value = $\Pr(\mathcal{F}_{q,\infty} > \widehat{F})$

where \widehat{F} is the value of the *F* statistic actually computed.

- Note that we do not use the homoskedasticity-only *F*-statistic for the same reason as why we do not use Student *t* distribution.
 - In economic data, errors are mostly heteroskedastic and normality assumption does not hold. But, n is typically large.

$\mathcal{F}_{q,\infty}$ distribution



F-test example, California class size data:

reg testscr str	expn_stu po	ctel, r;				
Regression with	robust star	ndard errors			Number of obs	= 420
					F(3, 416)	= 147.20
					Prob > F	
					R-squared	
					Root MSE	
			+	P>I+I	[95% Conf.	Intervall
· ·					-1.234001	
•						
					.0007607	
pctel	6560227	.0317844	-20.64	0.000	7185008	5935446
					619.1917	
					<u>NOTE</u>	
test str expn_s	tu; The te	st command f	ollows th	ne regre	ssion	
(1) str = 0.	0 There a	are q=2 rest	rictions	being t	ested	
(2) expn stu	= 0.0					
F(2.	(416) = 1	5.43	The 5%	critica	l value for q=2	2 is 3.00
Prob > F	= 0.004	7 Stata co	mputes th	ie p-val	ue for you	

Hence, we can reject H_0 : $\beta_1 = \beta_2 = 0$ at significance level of 1%.

Testing Single Restrictions on Multiple Coefficients (SW Section 7.3)

Consider the regression equation

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + u_i, \quad i = 1, ..., n$$

Consider the null and alternative hypothesis,

$$H_0: \beta_1 = \beta_2$$
 vs. $H_1: \beta_1 \neq \beta_2$

- This null imposes a single restriction (q = 1) on multiple coefficients it is not a joint hypothesis with multiple restrictions, e.g., H₀: β₁ = 0 and β₂ = 0.
- There are two methods for testing single restrictions on multiple coefficients: (1) rearrange the regression (2) perform the test directly

Method 1: Rearrange ("transform") the regression

We start from

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + u_i$$

 $H_0: \beta_1 = \beta_2$ vs. $H_1: \beta_1 \neq \beta_2$

Add and subtract $\beta_2 X_{i1}$;

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} - \beta_{2}X_{i1} + \beta_{2}X_{i2} + \beta_{2}X_{i1} + u_{i}$$

= $\beta_{0} + (\beta_{1} - \beta_{2})X_{i1} + \beta_{2}(X_{i1} + X_{i2}) + u_{i}$
= $\beta_{0} + \gamma X_{i1} + \beta_{2}W_{i} + u_{i}$

where $\gamma := \beta_1 - \beta_2$ and $W_i := X_{i1} + X_{i2}$.

• Test
$$H_0$$
 : $\gamma = 0$ vs H_1 : $\gamma \neq 0$.

▶ Then, this is equivalent to testing H_0 : $\beta_1 = \beta_2$ against H_1 : $\beta_1 \neq \beta_2$

Method 2: Perform the test directly

Again, we have

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + u_i$$
$$H_0: \beta_1 = \beta_2 \quad vs. \quad H_1: \beta_1 \neq \beta_2$$

Example:

 $TestScore_{i} = \beta_{0} + \beta_{1}STR_{i} + \beta_{2}Expn_{i} + \beta_{3}PctEL_{i} + u_{i}$

ln STATA, to test H_0 : $\beta_1 = \beta_2$ (two sided);

regress testscore str expn pctel, r
test str = expn

Confidence Sets for Multiple Coefficients (SW Section 7.4)

Consider the regression equation

 $Y_i = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_k X_{ik} + u_i, \qquad i = 1, \ldots, n$

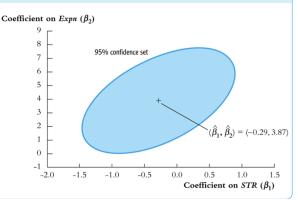
- What is a joint confidence set for β_1 and β_2 ?
- A 95% joint confidence set is:
 - A set-valued function of the data that contains the true coefficient(s) in 95% of hypothetical repeated samples.
 - Equivalently, the set of coefficient values that cannot be rejected at the 5% significance level.
- You can find a 95% confidence set as the set of (β₁, β₂) that cannot be rejected at the 5% level using an F-test (why not just combine the two 95% confidence intervals?).

Joint confidence sets (continued)

- Let $F(\beta_{1,0}, \beta_{2,0})$ be the (heteroskedasticity-robust) F-statistic testing the hypothesis that $\beta_1 = \beta_{1,0}$ and $\beta_2 = \beta_{2,0}$:
- 95% confidence set = { $\beta_{1,0}, \beta_{2,0} : F(\beta_{1,0}, \beta_{2,0}) < 3.00$ }
- ► 3.00 is the 5% critical value of the F_{2,∞} distribution
- This set has coverage rate 95% because the test on which it is based on (the test it "inverts") has size of 5%
- 5% of the time, the test incorrectly rejects the null when the null is true, so 95% of the time it does not;
- therefore the confidence set constructed as the non-rejected values contains the true value 95% of the time (in 95% of all samples).

Confidence set based on inverting the F-statistic

The 95% confidence set for the coefficients on *STR* (β_1) and *Expn* (β_2) is an ellipse. The ellipse contains the pairs of values of β_1 and β_2 that cannot be rejected using the *F*-statistic at the 5% significance level.



Regression Specification: variables of interest, control variables, and conditional mean independence (SW Section 7.5)

- We want to get an unbiased estimate of the effect on test scores of changing class size, holding constant factors outside the school committee's control:
 - such as outside learning opportunities (museums, etc), parental involvement in education (reading with mom at home?), etc.
- If we could run an experiment, we would randomly assign students (and teachers) to different sized classes.
 - Then STR_i would be independent of all the things in u_i , so $E(u_i|STR_i) = 0$.
 - Then, the OLS slope estimator in the regression of *TestScore_i* on *STR_i* will be an unbiased estimator of the desired causal effect.

Regression Specification: control variables

- But with observational data, u_i depends on additional factors (museums, parental involvement, knowledge of English etc).
- ▶ If you can observe those factors (e.g., *PctEL*), then include them.
- But usually you can't observe all these omitted causal factors (e.g., parental involvement in homework).
- In this case, you can include control variables
- A control variable W is a variable that
 - 1. is correlated with (controls for) an omitted causal factor in the regression of *Y* on *X*,
 - 2. but does not necessarily have a causal effect on Y.

Control variables: an example from the California test score data

$$\begin{array}{rcl} \widehat{Test \ Score} &=& 700.2 - & 1.00 \ STR - & 0.122 \ PctEL - & 0.547 \ LchPct \\ (5.6) & (0.27) & (0.033) & (0.024) \\ \hline \overline{R}^2 &= 0.773 \end{array}$$

PctEL = percentage of English Learners in the school district *LchPct* = percentage of students receiving a free/subsidized lunch (only students from low-income families are eligible)

- Which variable is the variable of interest?
- Which variables are control variables? Do they have causal components? What do they control for?

Control variables example (continued)

$$\widehat{\text{Test Score}} = \begin{array}{ccc} 700.2 - & 1.00 STR - & 0.122 PctEL - & 0.547 LchPct \\ (5.6) & (0.27) & (0.033) & (0.024) \end{array}$$

$$\overline{R}^2 = 0.773$$

- STR is the variable of interest
- PctEL probably has a direct causal effect (school is tougher if you are learning English!). But it is also a control variable:
 - immigrant communities tend to be less affluent and often have fewer outside learning opportunities
 - PctEL is correlated with those omitted causal variables.
 - So, *PctEL* is both a possible causal variable and a control variable.
- LchPct might have a causal effect (eating lunch helps learning)
 - It is also correlated with and controls for income-related outside learning opportunities.
 - So, *LchPct* is both a possible causal variable and a control variable.

Control variables (continued)

Three interchangeable statements about what makes an effective control variable:

- 1. An effective control variable is one which, when included in the regression, makes the error term uncorrelated with the variable of interest.
- 2. Holding constant the control variable(s), the variable of interest is "as if" randomly assigned.
- 3. Among individuals (entities) with the same value of the control variable(s), the variable of interest is uncorrelated with the omitted determinants of *Y*

Control variables need not be causal, and their coefficients generally DO NOT have a causal interpretation. For example,

$$\begin{array}{rcl} \hline Test \ \hline Score = & 700.2 - & 1.00 \ STR - & 0.122 \ PctEL - & 0.547 \ LchPct \\ (5.6) & (0.27) & (0.033) & (0.024) \end{array}$$

- Does the coefficient on LchPct have a causal interpretation?
- If so, then we should be able to boost test scores (by a lot! Do the math!) by simply eliminating the school lunch program, so that LchPct = 0!
- This is not reasonable!! In fact, studies show the opposite.

Control Variables: Conditional mean independence

We need a mathematical statement for effective control variables. Formally, consider the regression model;

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 W_i + U_i$$

where X_i is the variable of interest and W_i is a control variable.

► *W_i* is an effective control variable if **conditional mean independence** holds:

$$E(u_i|X_i, W_i) = E(u_i|W_i).$$

- ▶ In addition, suppose that LSA #2, #3, and #4 hold. Then:
 - 1. β_1 has a causal interpretation
 - 2. $\hat{\beta}_1$ is unbiased
 - 3. The coefficient on the control variable, $\hat{\beta}_2$, is generally biased
 - 4. See Appendix 6.5 for the mathematics of 1-3.

Implications for variable selection and "model specification"

- 1. Identify the variable of interest
- 2. Think of the omitted causal effects that could result in omitted variable bias
- 3. Include those omitted causal effects if you can or, if you can't, include variables correlated with them that serve as control variables.
 - The control variables are effective if the conditional mean independence assumption plausibly holds. This results in a base or benchmark model.
- 4. Also specify a range of plausible alternative models, which include additional candidate variables.
- 5. Estimate your base model and plausible alternative specifications ("sensitivity checks").
 - Does a candidate variable change the coefficient of interest (β_1) ?
 - Is a candidate variable statistically significant?
 - Use judgment, not a mechanical recipe.
 - Never ever just try to maximize R²!

Digression about measures of fit...

It is easy to fall into the trap of maximizing the R^2 and \overline{R}^2 , but this loses sight of our real objective, e.g., an unbiased estimator of the class size effect.

- A high R^2 (or \overline{R}^2) means that the regressors explain the variation in Y.
- A high R^2 (or \overline{R}^2) does NOT mean any of the followings;
 - you have eliminated omitted variable bias.
 - you have an unbiased estimator of a causal effect (β_1).
 - the included variables are statistically significant this must be determined using hypotheses tests.

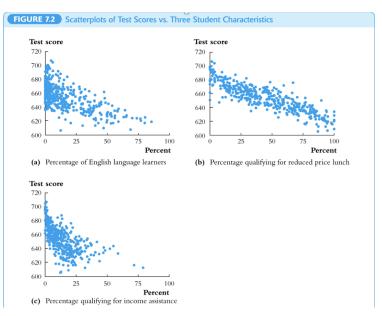
Analysis of the Test Score Data Set (SW Section 7.6)

- 1. Identify the variable of interest: STR
- 2. Think of the omitted causal effects that could result in omitted variable bias;
 - whether the students know English;
 - outside learning opportunities;
 - parental involvement;
 - teacher quality (if teacher salary is correlated with district wealth)
 - there is a long list!
- 3. Include those omitted causal effects if you can or, if you can't, include control variables to construct a base model.
 - Many of the omitted causal variables are hard to measure, so we need to find control variables.
 - These include PctEL (both a control variable and an omitted causal factor) and measures of district wealth.

Analysis of the Test Score Data Set, continued

- 4. Also specify a range of plausible alternative models, which include additional candidate variables.
 - It is not clear which of the income-related variables will best control for the many omitted causal factors such as outside learning opportunities.
 - So the alternative specifications include regressions with different income variables.
 - The alternative specifications considered here are just a starting point, not the final word!
- 5. Estimate your base model and plausible alternative specifications ("sensitivity checks").

Test scores and California socioeconomic data ...



28/31

Digression on presentation of regression results

- We have a number of regressions and we want to report them. It is awkward and difficult to read regressions written out in equation form.
- So it is conventional to report them in a table. The table should include:
 - estimated regression coefficients
 - standard errors
 - measures of fit
 - number of observations
 - relevant F-statistics, if any
 - Any other pertinent information.
- Find this information in the following table:

A Table to summarise estimation results

Dependent variable: average test score in the district.							
Regressor	(1)	(2)	(3)	(4)	(5)		
Student–teacher ratio (X_1)	$^{-2.28**}_{(0.52)}$	-1.10* (0.43)	-1.00** (0.27)	-1.31** (0.34)	-1.01** (0.27)		
Percent English learners (X_2)		-0.650** (0.031)	-0.122** (0.033)	-0.488** (0.030)	-0.130** (0.036)		
Percent eligible for subsidized lunch (X_3)			-0.547** (0.024)		-0.529** (0.038)		
Percent on public income assistance (X_4)				-0.790** (0.068)	0.048 (0.059)		
Intercept	698.9** (10.4)	686.0** (8.7)	700.2** (5.6)	698.0** (6.9)	700.4** (5.5)		
Summary Statistics							
SER	18.58	14.46	9.08	11.65	9.08		
\overline{R}^2	0.049	0.424	0.773	0.626	0.773		
n	420	420	420	420	420		

These regressions were estimated using the data on K-8 school districts in California, described in Appendix 4.1. Heteroskedasticity-robust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the *5% level or **1% significance level using a two-sided test.

Summary: Multiple Regression

- Multiple regression allows you to estimate the effect on Y of a change in X_1 , holding other included variables constant.
- If you can measure a variable, you can avoid omitted variable bias from that variable by including it.
- If you can't measure the omitted variable, you still might be able to control for its effect by including a control variable.
- There is no simple recipe for deciding which variables belong in a regression – you must exercise judgment.
- One approach is to specify a base model relying on a-priori reasoning – then explore the sensitivity of the key estimate(s) in alternative specifications.