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Outline

I Hypothesis tests and confidence intervals for one coefficient
I Joint hypothesis tests on multiple coefficients
I Other types of hypotheses involving multiple coefficients
I Variables of interest, control variables, and variable selection
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Hypothesis Tests and Confidence Intervals for a Single Coefficient
(SW Section 7.1)

I Hypothesis tests and confidence intervals for a single coefficient in
multiple regression follow the same logic and recipe as for the slope
coefficient in a single-regressor model.

I β̂1−β1
SE(β̂1)

is approximately distributed N (0, 1).

I Thus hypotheses on β1 can be tested using the usual t-statistic, and
confidence intervals are constructed as β̂1 ± 1.96× SE(β̂1).

I The same method applies to β2, . . . , βk .
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Example: The California class size data

1. Single Regressor:

̂TestScore = 698.9 − 2.28 STR
(10.4) (0.52)

2. Multiple Regressors:

̂TestScore = 686.0− 1.10STR− 0.650PctEL
(8.7) (0.43) (0.031)

I The coefficient on STR in (2) is the effect on TestScore of a unit change
in STR, holding constant the percentage of English Learners

I The coefficient on STR falls by one-half. The 95% confidence interval for
coefficient on STR in (2) is −1.10± 1.96× 0.43 = (−1.95,−0.26)

I The t-statistic testing βSTR = 0 is t = −1.10/0.43 = −2.54, so we reject
the hypothesis at the 5% significance level
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Standard errors in multiple regression in STATA
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Tests of Joint Hypotheses (SW Section 7.2)

I Let Expn := expenditures per student, and consider

TestScorei = β0 + β1STRi + β2Expni + β3PctELi + ui

I The null hypothesis that “school resources do not matter,” and the
alternative that they do, corresponds to:

H0 : β1 = 0 and β2 = 0 vs H1 : β1 6= 0 or β2 6= 0 or both

I A joint hypothesis specifies a value for two or more coefficients, i.e., it
imposes a restriction on two or more coefficients simultaneously.

I In general, a joint hypothesis will involve q restrictions. In the example
above, q = 2, and the two restrictions are β1 = 0 and β2 = 0.
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Why can’t we just test the coefficients one at a time?

I A “common sense” idea is to reject if either of the individual t-statistics
exceeds 1.96 in absolute value.

I But this “one at a time” test is not valid: the resulting test rejects too
often under the null hypothesis (more than 5%)!

I The “one at time” test is to reject H0 : β1 = β2 = 0 if |t1| > 1.96 and/or
|t2| > 1.96

I What is the probability that this “one at a time” test rejects H0, when H0 is
actually true? (It should be 5%.) Suppose t1 and t2 are independent,

Pr(|t1| > 1.96 and/or |t2| > 1.96|H0)

= 1− Pr(|t1| < 1.96|H0)× Pr(|t2| < 1.96|H0)

= 1− (0.95)2 ≈ 9.75% 6= 5%

I The size of the “common sense” test is not 5%! So, we will study F test.
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The F -statistic

I The heteroskedasticity-robust F -statistic testing H0 with q restrictions is
approximately distributed as Fq,∞ when n is large.

I The critical values for the F -statistic can be found from the tables of
Fq,∞. Note that the critical values depend on q.

I It is more convenient to conduct the hypothesis testing using p value

p-value = Pr(Fq,∞ > F̂ )

where F̂ is the value of the F statistic actually computed.
I Note that we do not use the homoskedasticity-only F -statistic for the

same reason as why we do not use Student t distribution.
I In economic data, errors are mostly heteroskedastic and normality

assumption does not hold. But, n is typically large.

8 / 31



Fq,∞ distribution
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F-test example, California class size data:

Hence, we can reject H0 : β1 = β2 = 0 at significance level of 1%.
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Testing Single Restrictions on Multiple Coefficients (SW Section 7.3)

I Consider the regression equation

Yi = β0 + β1Xi1 + β2Xi2 + ui , i = 1, . . . , n

I Consider the null and alternative hypothesis,

H0 : β1 = β2 vs. H1 : β1 6= β2

I This null imposes a single restriction (q = 1) on multiple coefficients – it
is not a joint hypothesis with multiple restrictions, e.g.,
H0 : β1 = 0 and β2 = 0.

I There are two methods for testing single restrictions on multiple
coefficients: (1) rearrange the regression (2) perform the test directly
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Method 1: Rearrange (“transform”) the regression

I We start from
Yi = β0 + β1Xi1 + β2Xi2 + ui

H0 : β1 = β2 vs. H1 : β1 6= β2

I Add and subtract β2Xi1;

Yi = β0 + β1Xi1 − β2Xi1 + β2Xi2 + β2Xi1 + ui

= β0 + (β1 − β2)Xi1 + β2(Xi1 + Xi2) + ui

= β0 + γXi1 + β2Wi + ui

where γ := β1 − β2 and Wi := Xi1 + Xi2.
I Test H0 : γ = 0 vs H1 : γ 6= 0.
I Then, this is equivalent to testing H0 : β1 = β2 against H1 : β1 6= β2
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Method 2: Perform the test directly

I Again, we have
Yi = β0 + β1Xi1 + β2Xi2 + ui

H0 : β1 = β2 vs. H1 : β1 6= β2

I Example:

TestScorei = β0 + β1STRi + β2Expni + β3PctELi + ui

I In STATA, to test H0 : β1 = β2 (two sided);

regress testscore str expn pctel, r
test str = expn
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Confidence Sets for Multiple Coefficients (SW Section 7.4)

I Consider the regression equation

Yi = β0 + β1Xi1 + · · ·+ βk Xik + ui , i = 1, . . . , n

I What is a joint confidence set for β1 and β2?
I A 95% joint confidence set is:

I A set-valued function of the data that contains the true coefficient(s) in 95%
of hypothetical repeated samples.

I Equivalently, the set of coefficient values that cannot be rejected at the 5%
significance level.

I You can find a 95% confidence set as the set of (β1, β2) that cannot be
rejected at the 5% level using an F-test (why not just combine the two
95% confidence intervals?).
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Joint confidence sets (continued)

I Let F (β1,0, β2,0) be the (heteroskedasticity-robust) F-statistic testing the
hypothesis that β1 = β1,0 and β2 = β2,0:

I 95% confidence set = {β1,0, β2,0 : F (β1,0, β2,0) < 3.00}
I 3.00 is the 5% critical value of the F2,∞ distribution
I This set has coverage rate 95% because the test on which it is based on

(the test it “inverts”) has size of 5%
I 5% of the time, the test incorrectly rejects the null when the null is true,

so 95% of the time it does not;
I therefore the confidence set constructed as the non-rejected values

contains the true value 95% of the time (in 95% of all samples).
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Confidence set based on inverting the F-statistic
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Regression Specification: variables of interest, control variables, and
conditional mean independence (SW Section 7.5)

I We want to get an unbiased estimate of the effect on test scores of
changing class size, holding constant factors outside the school
committee’s control:
I such as outside learning opportunities (museums, etc), parental involvement

in education (reading with mom at home?), etc.
I If we could run an experiment, we would randomly assign students (and

teachers) to different sized classes.
I Then STRi would be independent of all the things in ui , so E(ui |STRi ) = 0.
I Then, the OLS slope estimator in the regression of TestScorei on STRi will

be an unbiased estimator of the desired causal effect.
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Regression Specification: control variables

I But with observational data, ui depends on additional factors (museums,
parental involvement, knowledge of English etc).

I If you can observe those factors (e.g., PctEL), then include them.
I But usually you can’t observe all these omitted causal factors (e.g.,

parental involvement in homework).
I In this case, you can include control variables
I A control variable W is a variable that

1. is correlated with (controls for) an omitted causal factor in the regression of
Y on X ,

2. but does not necessarily have a causal effect on Y .
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Control variables: an example from the California test score data

̂Test Score = 700.2− 1.00STR− 0.122PctEL− 0.547LchPct
(5.6) (0.27) (0.033) (0.024)

R
2
= 0.773

PctEL = percentage of English Learners in the school district
LchPct = percentage of students receiving a free/subsidized lunch
(only students from low-income families are eligible)
I Which variable is the variable of interest?
I Which variables are control variables? Do they have causal

components? What do they control for?
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Control variables example (continued)

̂Test Score = 700.2− 1.00STR− 0.122PctEL− 0.547LchPct
(5.6) (0.27) (0.033) (0.024)

R
2
= 0.773

I STR is the variable of interest
I PctEL probably has a direct causal effect (school is tougher if you are

learning English!). But it is also a control variable:
I immigrant communities tend to be less affluent and often have fewer outside

learning opportunities
I PctEL is correlated with those omitted causal variables.
I So, PctEL is both a possible causal variable and a control variable.

I LchPct might have a causal effect (eating lunch helps learning)
I It is also correlated with and controls for income-related outside learning

opportunities.
I So, LchPct is both a possible causal variable and a control variable.
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Control variables (continued)

Three interchangeable statements about what makes an effective control
variable:

1. An effective control variable is one which, when included in the
regression, makes the error term uncorrelated with the variable of
interest.

2. Holding constant the control variable(s), the variable of interest is “as if”
randomly assigned.

3. Among individuals (entities) with the same value of the control
variable(s), the variable of interest is uncorrelated with the omitted
determinants of Y
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Control variables (continued)

Control variables need not be causal, and their coefficients generally DO
NOT have a causal interpretation. For example,

̂Test Score = 700.2− 1.00STR− 0.122PctEL− 0.547LchPct
(5.6) (0.27) (0.033) (0.024)

I Does the coefficient on LchPct have a causal interpretation?
I If so, then we should be able to boost test scores (by a lot! Do the math!)

by simply eliminating the school lunch program, so that LchPct = 0!
I This is not reasonable!! In fact, studies show the opposite.
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Control Variables: Conditional mean independence

I We need a mathematical statement for effective control variables.
Formally, consider the regression model;

Yi = β0 + β1Xi + β2Wi + ui

where Xi is the variable of interest and Wi is a control variable.
I Wi is an effective control variable if conditional mean independence

holds:
E(ui |Xi ,Wi) = E(ui |Wi).

I In addition, suppose that LSA #2, #3, and #4 hold. Then:
1. β1 has a causal interpretation
2. β̂1 is unbiased
3. The coefficient on the control variable, β̂2, is generally biased
4. See Appendix 6.5 for the mathematics of 1-3.
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Implications for variable selection and “model specification”

1. Identify the variable of interest

2. Think of the omitted causal effects that could result in omitted variable
bias

3. Include those omitted causal effects if you can or, if you can’t, include
variables correlated with them that serve as control variables.
I The control variables are effective if the conditional mean independence

assumption plausibly holds. This results in a base or benchmark model.

4. Also specify a range of plausible alternative models, which include
additional candidate variables.

5. Estimate your base model and plausible alternative specifications
(“sensitivity checks”).
I Does a candidate variable change the coefficient of interest (β1)?
I Is a candidate variable statistically significant?
I Use judgment, not a mechanical recipe.
I Never ever just try to maximize R2!

24 / 31



Digression about measures of fit...

It is easy to fall into the trap of maximizing the R2 and R
2
, but this loses sight

of our real objective, e.g., an unbiased estimator of the class size effect.

I A high R2 (or R
2
) means that the regressors explain the variation in Y.

I A high R2 (or R
2
) does NOT mean any of the followings;

I you have eliminated omitted variable bias.
I you have an unbiased estimator of a causal effect (β1).
I the included variables are statistically significant – this must be determined

using hypotheses tests.
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Analysis of the Test Score Data Set (SW Section 7.6)

1. Identify the variable of interest: STR
2. Think of the omitted causal effects that could result in omitted variable

bias;
I whether the students know English;
I outside learning opportunities;
I parental involvement;
I teacher quality (if teacher salary is correlated with district wealth)
I there is a long list!

3. Include those omitted causal effects if you can or, if you can’t, include
control variables to construct a base model.
I Many of the omitted causal variables are hard to measure, so we need to

find control variables.
I These include PctEL (both a control variable and an omitted causal factor)

and measures of district wealth.
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Analysis of the Test Score Data Set, continued

4. Also specify a range of plausible alternative models, which include
additional candidate variables.
I It is not clear which of the income-related variables will best control for the

many omitted causal factors such as outside learning opportunities.
I So the alternative specifications include regressions with different income

variables.
I The alternative specifications considered here are just a starting point, not

the final word!

5. Estimate your base model and plausible alternative specifications
(“sensitivity checks”).
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Test scores and California socioeconomic data ...
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Digression on presentation of regression results

I We have a number of regressions and we want to report them. It is
awkward and difficult to read regressions written out in equation form.

I So it is conventional to report them in a table. The table should include:
I estimated regression coefficients
I standard errors
I measures of fit
I number of observations
I relevant F-statistics, if any
I Any other pertinent information.

I Find this information in the following table:
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A Table to summarise estimation results
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Summary: Multiple Regression

I Multiple regression allows you to estimate the effect on Y of a change in
X1, holding other included variables constant.

I If you can measure a variable, you can avoid omitted variable bias from
that variable by including it.

I If you can’t measure the omitted variable, you still might be able to
control for its effect by including a control variable.

I There is no simple recipe for deciding which variables belong in a
regression – you must exercise judgment.

I One approach is to specify a base model – relying on a-priori reasoning
– then explore the sensitivity of the key estimate(s) in alternative
specifications.
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