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Panel Data: What and Why SW Section 10.1

I A panel dataset contains observations on multiple entities (individuals,
states, companies...), where each entity is observed at two or more
points in time. Hypothetical examples:
I Data on 420 CA school districts in 1999 and 2000, for 840 observations total.
I Data on 50 U.S. states, each observed in 3 years, for 150 observations total.
I Data on 1000 individuals, in 4 different months, for 4000 observations total.

I A double subscript distinguishes entities and time periods
I If we have 1 regressor, the data are:

(Xit ,Yit ), i = 1, . . . , n, t = 1, . . . ,T

I More generally, if we have k regressor, the data are:

(Xi1t , . . . ,Xikt ,Yit ), i = 1, . . . , n, t = 1, . . . ,T

I Some jargon...
I Another term for panel data is longitudinal data
I balanced panel: all variables are observed for all entities and all time

periods
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Why are panel data useful?

I With panel data we can control for (unobserved) factors that:
1. may cause omitted variable bias
2. vary across entities i but do not vary over time t (or, the other way around)

I Example of a panel data set: Traffic deaths and alcohol taxes
I 48 U.S. states, so n = # of entities = 48
I 7 years (1982,..., 1988), so T = # of time periods = 7
I Balanced panel, so total # observations = 7× 48 = 336
I For each state i and each year t , we observe Traffic fatality rate (# traffic

deaths in state i in year t , per 10,000 state residents), Tax on a case of beer,
and other variables (legal driving age, drunk driving laws, etc.)
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U.S. traffic death data for 1982:

I Higher alcohol taxes, more traffic deaths?
I There can be omitted factors that cause omitted variable bias
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Omitted factors

I Example 1: “traffic density.”
I high traffic density means more traffic accidents, and more traffic deaths.
I Also, (Western) states with lower traffic density have lower alcohol taxes

I Example 2: Cultural attitudes towards drinking and driving
I arguably are a determinant of traffic deaths; and
I potentially are correlated with the beer tax.

I Both cases satisfy the two conditions for omitted variable bias
I We can eliminate the omitted factors using the structure of the panel data

if the factors do not change over time (at least within the sample period)
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Panel Data with Two Time Periods SW Section 10.2

I Consider the panel data model,

FatalityRateit = β0 + β1BeerTaxit + β2Zi + uit ,

where Zi is a factor that does not change over time (density), at least
during the years on which we have data.

I Suppose E [uit |BeerTaxit ,Zi ] = 0 but Zi is not observed.
I Then, its omission could result in omitted variable bias. However, the

effect of Zi can be eliminated using T = 2 years (or more).
I The key idea: Any change in the fatality rate from 1982 to 1988 cannot

be caused by Zi , because Zi (by assumption) does not change between
1982 and 1988.
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I We have two regression equations, one for 1988 and the other for 1982

FatalityRatei,1988 = β0 + β1BeerTaxi,1988 + β2Zi + ui,1988

FatalityRatei,1982 = β0 + β1BeerTaxi,1982 + β2Zi + ui,1982

I We take the difference to eliminate the effect from Zi ;

(FatalityRatei,1988 − FatalityRatei,1982) =β1(BeerTaxi,1988 − BeerTaxi,1982)

+ (ui,1988 − ui,1982)

I The new error term, (ui,1988 − ui,1982), is not correlated with either
BeerTaxi,1988 or BeerTaxi,1982.

I Hence, an OLS regression of (the change in FatalityRate) on (the
change in BeerTax) would result in a consistent and unbiased estimator
for β1.
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∆FatalityRate vs. ∆BeerTax

I Note that the intercept is included in this regression and its estimate is
nearly zero
I adding an irrelevant variable→ estimation less efficient (larger SE)
I we might actually need an intercept; more on this later.
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Fixed Effects Regression SW Section 10.3

I What if you have more than 2 time periods (T > 2)?

Yit = β0 + β1Xit + β2Zi + uit , i = 1, . . . , n, T = 1, . . . ,T

I We can rewrite this in two equivalent ways:
I “n − 1 binary regressor” regression model
I “Fixed Effects” regression model

I We first rewrite this in “fixed effects” form. Suppose we have n = 3
states: California (CA), Texas (TX), and Massachusetts (MA).

I For i = CA, we rewrite the model above as follow;

YCA,t = β0 + β2ZCA︸ ︷︷ ︸
=αCA

+β1XCA,t + uCA,t

= αCA + β1XCA,t + uCA,t

I So, αCA ‘picks up’ ZCA, unobserved factors like ‘traffic density’ and
‘driving/drinking culture’ in CA, which may cause omitted variable bias.
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I We can do the same for TX and MA. Then, we have

YCA,t = αCA + β1XCA,t + uCA,t

YTX ,t = αTX + β1XTX ,t + uTX ,t

YMA,t = αMA + β1XMA,t + uMA,t

Or,

Yit = αi + β1Xit + uit , i = CA,TX ,MA, t = 1, . . . ,T

I So, we have three regressions with a common slope β1 and
state-specific intercepts αi for i = CA,TX ,MA.

I Here, αi is called the fixed effect (or state fixed effect in this example)
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The regression lines for each state in a picture

I Recall that we can re-write the fixed effect form using binary regressors;

Yit = β0 + γTX DTXi + γCADCAi + β1Xit + uit

where DTXi is the dummy for TX and DCAi is for CA.
I Question: Why DMA not included?
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Fixed Effects Regression Estimation

I We can easily generalize this to n observations:
Fixed effects form or, equivalently, regression with n − 1 dummies.

I Now, we have three estimation strategies;
1. “n − 1 binary regressors” OLS regression
2. “Entity-demeaned” OLS regression
3. “Changes” specification, without an intercept (only works for T = 2)

I These three methods produce identical estimates of the regression
coefficients, and identical standard errors.

I We already studied the “changes” specification (1988 minus 1982) – but
this only works for T = 2 years

I Methods #1 and #2 work for general T .
I Method #1 is only practical when n is not too big
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1. “n − 1 binary regressors” OLS regression

Yit = α1 + β1Xit + γ2D2i + · · ·+ γnDni + uit

where D2i = 1 if i is 2 (e.g., State #2), otherwise it is zero, etc.
I First create the binary variables D2i , . . . ,Dni . (how about D1?)
I Then estimate the coefficients by OLS
I Inference (hypothesis tests, confidence intervals) is as usual (using

heteroskedasticity-robust standard errors)
I This is impractical when n is large (for example if n = 1000 workers)
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2. “Entity-demeaned” OLS regression

I The Fixed Effect regression model:

Yit = β1Xit + αi + uit

where the FE, αi , absorbs unobserved factors that may result in omitted
variable bias in estimation of β1.

I In order to delete out αi , we take the sample average over t for each i ;

Y i = β1X i + αi + u i

where Y i =
1
T

∑T
t=1 Yit and similarly for X i and u i , i.e., they are sample

averages over time for each entity i = 1, . . . , n.
I Then, take the mean deviation for each entity i = 1, . . . , n;

(Yit − Y i) = β1(Xit − X i) + (uit − u i)

I Finally, estimate β1 via OLS without an intercept.
Then, this FE estimator is unbiased and consistent.
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Entity-demeaned OLS regression, ctd.

The entity demeaned regression model can be written as

Ỹit = β1X̃it + ũit

where Ỹit = Yit − Y i and X̃it = Xit − X i

I First construct the entity-demeaned variables Ỹit and X̃it

I Then estimate β1 by regressing Ỹit on X̃it using OLS
I Standard errors need to be computed in a way that accounts for the

panel nature of the data set (more later)
I This can be done in a single command in STATA
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Example: Traffic deaths and beer taxes in STATA

I First let STATA know you are working with panel data by defining the
entity variable (state) and time variable (year):
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Example: Traffic deaths and beer taxes in STATA
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Regression with Time Fixed Effects SW Section 10.4

An omitted variable might vary over time but not across states:
I Suppose safety improvements (air bags, etc) in new cars are introduced

nationally at some t ’s in the sample period.
I These serve to reduce traffic fatalities in all states and also these

produce intercepts that change over time.
I Let St denote the combined effect of variables which changes over time

but not states (“safer cars”).
I The resulting population regression model is:

Yit = β0 + β1Xit + β2Zi + β3St + uit
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Time fixed effects only

I If there was no entity FE, the model would be given as

Yit = β0 + β1Xit + β3St + uit

I That is, the time fixed effects regression model is

Yit = β1Xit + λt + uit

where λ1, . . . , λT are known as time fixed effects.
I This model can be equivalently written with T − 1 time dummies

Yit = β0 + β1Xit + δ2B2t + · · ·+ δT BTt + uit

where B2t = 1 if t is 2, otherwise it is zero, etc.
I Estimation and inference is parallel to the entity FE case above.

1. “T − 1” binary regressor” OLS regressions
2. “time-demeaned” OLS regression
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Estimation with both entity and time fixed effects

I We may have both entity FEs and time FEs. Then, the entity and time
fixed effects regression model is

Yit = β1Xit + αi + λt + uit

I When T = 2, computing the first difference and including an intercept is
equivalent to including entity and time fixed effects.

I When T > 2, there are a number of alternative algorithms to estimate
this model;
I entity demeaning & T − 1 time indicators (see the STATA example below)
I time demeaning & n − 1 entity indicators
I T − 1 time indicators & n − 1 entity indicators
I entity & time demeaning
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Example: Traffic deaths and beer taxes in STATA
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Example: Traffic deaths and beer taxes in STATA
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FE Regression Assumptions and SEs for FE Regression SW Section 10.5

I In panel data, errors can be correlated over time within an entity.
I This does not introduce bias into the FE estimator, but it affects the

variance of the estimator (just like heteroskedasticity).
I Hence, we have to adjust the way to compute SEs of the FE estimators.
I Here, we study FE regression assumptions under which FE estimator is

consistent and asymptotically normally distributed (as n→∞).
I Then, we describe clustered standard errors, which have been used in

the examples in this chapter.
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Model and Assumptions SW Section 10.5

I Consider the regression model with entity fixed effects,

Yit = β1Xit + αi + uit , i = 1, . . . , n, t = 1, . . . ,T

where
1. E [uit |Xi1, . . . ,XiT , αi ] = 0,

I This assumption implies there is no omitted variable bias.
I uit is not correlated with any of (Xi1, . . . , XiT ), i.e., the whole history

2. (Xi1, . . . ,XiT , ui1, . . . , uiT ), i = 1, . . . , n are i.i.d draws,
I This is i.i.d. across entities, but correlation is allowed within an entity over t .
I If Xit is correlated with Xis for t 6= s, Xit is autocorrelated or serially correlated.
I Example: beer tax of CA in 1982 will be correlated with beer tax of CA in 1983.
I Also, a major road improvement would reduce traffic accidents for many years.

3. Large outliers are unlikely: (Xit , uit ) have nonzero finite fourth moments,
4. There is no perfect multicollinearity.

I Under these assumptions, the FE estimator is unbiased, and it is
consistent and asymptotically normally distributed.
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HAC standard errors SW Section 10.5

I As before uit are heteroskedastic over i (and t). In addition to this, uit are
now likely to be autocorrelated omitted variableer t for each i .

I For valid statistical inference, we should use SEs that are robust to both
heteroskedasticity and autocorrelation (HAC): HAC standard errors.

I The SEs we use here are one type of HAC SEs, called clustered SEs,
which allows arbitrary serial correlation within each ‘cluster’ by i .

I Like heteroskedasticity-robust SEs in regression with cross-sectional
data, clustered SEs are valid whether or not there is heteroskedasticity
or autocorrelation or both for large n.
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Clustered SEs: Implementation in STATA
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Application: Drunk Driving Laws and Traffic Deaths SW Section 10.6

Some facts:
I Approx. 40,000 traffic fatalities annually in the U.S.
I 1/3 of traffic fatalities involve a drinking driver
I 25% of drivers on the road between 1 am and 3 am have been drinking
I A drunk driver is 13 times as likely to cause a fatal crash as a

non-drinking driver
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Application: Drunk Driving Laws and Traffic Deaths SW Section 10.6

Public policy issues:
I Drunk driving causes massive externalities (sober drivers are killed,

society bears medical costs, etc.) – there is ample justification for
governmental intervention

I Are there any effective ways to reduce drunk driving? If so, what?
I What are effects of specific laws?:

I mandatory punishment
I minimum legal drinking age
I economic interventions (alcohol taxes)
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The drunk driving panel data set
n = 48 U.S. states, T = 7 years (1982, . . . ,1988) (balanced)

Variables:
I Traffic fatality rate (deaths per 10,000 residents)
I Tax on a case of beer (Beertax)
I Minimum legal drinking age
I Minimum sentencing laws for first driving whilst intoxicated (DWI)

violation:
I Mandatory Jail
I Mandatory Community Service
I otherwise, sentence will just be a monetary fine

I Vehicle miles per driver (US Department of Transportation)
I State economic data (real per capita income, etc.)
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Why might panel data help?

I Potential omitted variable bias from variables that vary across states but
are constant over time:
I culture of drinking and driving
I quality of roads
I vintage of autos on the road

I use state fixed effects
I Potential omitted variable bias from variables that vary over time but are

constant across states:
I improvements in auto safety over time
I changing national attitudes towards drunk driving

I use time fixed effects
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Empirical Analysis: Main Results

I Sign of the beer tax coefficient changes when state FEs are included
I Time effects are statistically significant but including them doesn’t have a

big impact on the estimated coefficients
I Estimated effect of beer tax drops when other laws are included.
I The only policy variable that seems to have an impact is the tax on beer

– not minimum drinking age, not mandatory sentencing, etc.
I However, the beer tax is not significant even at the 10% level using

clustered SEs in the specifications which control for state economic
conditions (unemployment rate, personal income)

I In particular, the minimum legal drinking age (MLDA) has a small
coefficient which is not precisely1 estimated – reducing the MLDA
doesn’t seem to have much effect on overall driving fatalities.

1The textbook says it is ‘precisely’ estimated, which is a typo.
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Digression: extensions of the “n − 1 binary regressor” idea

I The idea of using many binary indicators to eliminate omitted variable
bias can be extended to non-panel data

I The key is that the omitted variable is constant for a group of
observations, so that each group has its own intercept.

I Example: Class size effect on Test Score.
I Suppose funding and curricular issues are determined at the county level,

and each county has several districts.
I If you are worried about omitted variable bias resulting from unobserved

county-level variables, you could include county effects.
I That is, include binary indicators, one for each county, omitting one county to

avoid perfect multicollinearity
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