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Outline

I The Linear Probability Model
I Probit and Logit Regression
I Estimation and Inference in Probit and Logit
I Application to Racial Discrimination in Mortgage Lending
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Binary Dependent Variables: What’s Different?

I So far the dependent variable (Y ) has been continuous:
I district-wide average test score
I traffic fatality rate

I What if Y is binary?
I Y = get into college, or not;

X = high school grades, SAT scores, demographic variables
I Y = person smokes, or not;

X = cigarette tax rate, income, demographic variables
I Y = mortgage application is accepted, or not;

X = race, income, house characteristics, marital status
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Example: Mortgage Denial and Race, The Boston Fed HMDA Dataset

I Individual applications for single-family mortgages made in 1990 in the
greater Boston area

I 2380 observations, collected under Home Mortgage Disclosure Act
(HMDA)

I Variables include:
I Dependent variable: Is the mortgage denied or accepted?
I Independent variables: income, wealth, employment status, other

characteristics of applicant like race.
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Binary Dependent Variables and the Linear Probability Model
SW Section 11.1

I A natural starting point is the linear regression model with a single X :

Yi = β0 + β1Xi + ui

I But:
I What does β1 mean when Y is binary? Is β1 = Y

X ?
I What does the line β0 + β1X mean when Y is binary?
I What does the predicted value Ŷ mean when Y is binary? Ex: Ŷ = 0.26?

I When Y is binary, we have

Pr(Y = 1|X ) = β0 + β1X

I This is because E(Y |X ) = 1×Pr(Y = 1|X ) + 0×Pr(Y = 0|X ). And, LS
assumption #1, E(u|X ) = 0⇒ E(Y |X ) = E(β0 +β1X + u|X ) = β0 +β1X

I So, Ŷ is the predicted probability that Y = 1, given X
β1 is the change in probability that Y = 1 for a unit change in X :

5 / 34



Example: linear probability model, HMDA data
Mortgage denial vs. ratio of debt payments to income (P/I ratio) in a
subset of the HMDA data set (n = 127)
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Linear probability model: full HMDA data set

Deny = −0.080+ 0.604× (PIratio), n = 2, 380
(0.032) (0.098)

I What is the predicted value for P/I ratio = .3?

Pr(deny = 1|PIratio = .3) = −.080 + .604× .3 = .101

I Calculating “effects:” increase P/I ratio from .3 to .4:

Pr(deny = 1|PIratio = .4) = −.080 + .604× .4 = .161

I The effect on the probability of denial of an increase in P/I ratio from .3 to
.4 is to increase the probability by .06, that is, by 6.0 percentage points.
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Linear probability model: full HMDA data set

Next include black as a regressor:

Deny = −0.091+ 0.559× (PIratio)+ 0.177× Black , n = 2, 380
(0.032) (0.098) (0.025)

Predicted probability of denial:
I for black applicant with P/I ratio = .3:

Pr(deny = 1) = −.091 + .559× .3 + .177× 1 = .254

I for white applicant, P/I ratio = .3:

Pr(deny = 1) = −.091 + .559× .3 + .177× 0 = .077

I difference = .177 = 17.7 percentage points
I Coefficient on black is significant at the 5% level
I Still plenty of room for omitted variable bias?
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The linear probability model: Summary

I The linear probability model models Pr(Y = 1|X ) as a linear function of
X

I Advantages:
I simple to estimate and to interpret
I inference is the same as for multiple regression (heteroskedasticity robust

SE!!)
I Disadvantages:

I A LPM says that the change in the predicted probability for a given change in
X is the same for all values of X , but that doesn’t make sense.

I Also, LPM predicted probabilities can be < 0 or > 1!

I These disadvantages can be solved by using a nonlinear probability
model: probit and logit regression
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Probit and Logit Regression SW Section 11.2

I The problem with the linear probability model is that it models the
probability of Y=1 as being linear:

Pr(Y = 1|X ) = β0 + β1X

I Instead, we want:
1. Pr(Y = 1|X) to be increasing in X for β1 > 0, and
2. 0 ≤ Pr(Y = 1|X) ≤ 1 for all X

I This requires using a nonlinear functional form for the probability.
I The probit model and logit model always satisfy these conditions:
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Probit Regression

I Probit model considers the structure

zi = β0 + β1Xi + ui ,

u1, . . . , un
iid∼ N (0, 1)

where we do not observe zi but we observe

Yi =

{
1 if zi ≥ 0
0 if zi < 0

I Then, a simple algebra shows that

Pr(Yi = 1|Xi ) = Φ(β0 + β1Xi ),

where Φ is the CDF of N (0, 1).
I For example, if β0 = −2, β1 = 3, and Xi = 0.4,

Pr(Yi = 1|Xi = 0.4) = Φ(−2 + 3× 0.4) = Φ(−0.8)

11 / 34



Probit Regression, continued

So, Pr(Yi = 1|Xi = 0.4) = Φ(−0.8) = 0.2119.
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Probit Regression, continued

I The “S-shape” gives us what we want:
1. Pr(Y = 1|X) to be increasing in X for β1 > 0, and
2. 0 ≤ Pr(Y = 1|X) ≤ 1 for all X

I Easy to use: – the probabilities are tabulated in the cumulative normal
tables (and also are easily computed using regression software)

I Relatively straightforward interpretation:
I β0 + β1X = z-value
I β̂0 + β̂1X is the predicted z-value, given X
I β1 is the change in the z-value for a unit change in X
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Stata example: HMDA data
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Stata example: HMDA data

I Positive coefficient β1: Does this make sense?
I Standard errors have the usual interpretation
I Predicted probabilities:

Pr(deny = 1|PIratio = 0.3) = Φ(−2.19+2.97×0.3) = Φ(−1.30) = .097

I Effect of change in P/I ratio from 0.3 to 0.4:

Pr(deny = 1|PIratio = 0.4) = Φ(−2.19+2.97×0.4) = Φ(−1.00) = .159

I Predicted probability of denial rises from .097 to .159
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Probit regression with multiple regressors

I A slight extension gives

Pr(Y = 1|X1,X2) = Φ(β0 + β1X1 + β2X2),

where Φ the cumulative normal distribution function.
I β0 + β1X1 + β2X2 is the z-value (or z-index, z-score) of the Probit model.
I β1 is the effect on the z-score of a unit change in X1, holding constant X2
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STATA Example: Predicted probit probabilities
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STATA Example, continued

I Is the coefficient on black statistically significant?
I Estimated effect of race for P/I ratio = 0.3:

Pr(deny = 1|0.3, 1) = Φ(−2.26 + 2.74× 0.3 + 0.71× 1) = 0.233

Pr(deny = 1|0.3, 0) = Φ(−2.26 + 2.74× 0.3 + 0.71× 0) = 0.075

I Difference in rejection probabilities = .158 (15.8 percentage points)
I Still plenty of room for omitted variable bias!
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Logit regression

I Logit model is the same as Probit model except that it uses the CDF of
logistic distribution, i.e.,

Pr(Y = 1|X ) = F (β0 + β1X ) =
1

1 + exp(−(β0 + β1X ))

I Because logit and probit use different probability functions, the
coefficients (β’s) are different in logit and probit, but predicted
probabilities are often very similar.

I Why bother with logit if we have probit?
I The main reason is historical: logit is computationally faster & easier
I In practice, logit and probit are very similar – since empirical results typically

do not hinge on the logit/probit choice, both tend to be used in practice
I So, we use probit or logit depending on which method is easiest to use in the

software package at hand (both are easy in Stata)
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STATA Example: logit
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Comparison: probit vs logit

The predicted probabilities from the probit and logit models are very close in
these HMDA regressions:
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Estimation

I We obtain maximum likelihood estimator (MLE) for logit/probit .
I For probit, we have

Pr(Y = 1|X ) = Φ(β0 + β1X )

Pr(Y = 0|X ) = 1− Φ(β0 + β1X )

I Then, the probability mass function (PMF) of Y can be written as

Φ(β0 + β1X )Y (1− Φ(β0 + β1X ))1−Y

I When (Y1,X1), . . . , (Yn,Xn) are independently distributed, the joint PMF
of (Y1, . . . ,Yn) conditional on (X1, . . . ,Xn) is

n∏
i=1

Φ(β0 + β1Xi )
Yi (1− Φ(β0 + β1Xi ))1−Yi

which can be viewed as the likelihood function of (β0, β1).
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Estimation: MLE

I Idea is to find (β0, β1) under which (Y1,X1), . . . , (Yn,Xn) is the most
likely. That is, the MLE (β̂ML

0 , β̂ML
1 ) solves

max
β0,β1

n∏
i=1

Φ(β0 + β1Xi )
Yi (1− Φ(β0 + β1Xi ))1−Yi

I We cannot solve this problem by hand. Use Stata or other softwares.
I It turns out that

I (β̂ML
0 , β̂ML

1 ) are consistent and asymptotically normally distributed.
I Using the asymptotic distribution, we can construct the standard errors.
I Testing and confidence intervals proceed as usual

I Logit is the same but uses the logit CDF F instead of Φ
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Measure of Fit

I Usual R2 and R̄2 do not make sense here. We use two alternative
measures of fit.

I The fraction correctly predicted:
I For each i = 1, . . . , n, let Ii = 1 if Φ(β̂ML

0 + β̂ML
1 Xi ) ≥ 0.5 for Yi = 1 or

Φ(β̂ML
0 + β̂ML

1 Xi ) < 0.5 for Yi = 0. Then, the fraction correctly predicted =∑
i Ii/n.

I Drawback: both 0.51 and 0.99 are counted in the same way. (quality of
prediction)

I The pseudo R2: uses the maximized (log) likelihood taking into account
the number of regressors.
I The pseudo-R2 measures the quality of fit of a probit/logit model by

comparing values of the maximized likelihood function with all the regressors
to the value of the likelihood with none.

I Pseudo-R2 = 1− LLur
LL0

.
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Application to the Boston HMDA Data SW Section 11.4

I Mortgages (home loans) are an essential part of buying a home.
I Is there differential access to home loans by race?
I If two otherwise identical individuals, one white and one black, applied

for a home loan, is there a difference in the probability of denial?
I Data on individual characteristics, property characteristics, and loan

denial/acceptance
I The mortgage application process circa 1990-1991:

I Go to a bank or mortgage company
I Fill out an application (personal+financial info)
I Meet with the loan officer
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The Loan Officer’s Decision

I Then the loan officer decides – by law, in a race-blind way. Presumably,
the bank wants to make profitable loans, and the loan officer doesn’t
want to originate defaults.

I Loan officer uses key financial variables:
I P/I ratio
I housing expense-to-income ratio
I loan-to-value ratio
I personal credit history

I The decision rule is nonlinear:
I loan-to-value ratio > 80%
I loan-to-value ratio > 95% (what happens in default?)
I credit score
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Regression Specifications

I Estimate Pr(deny = 1|black , otherXs) by linear probability model, probit
I Main problem with the regressions so far: potential omitted variable bias.
I The following variables (i) enter the loan officer decision and (ii) are or

could be correlated with race:
I wealth, type of employment
I credit history
I family status

I Fortunately, the HMDA data set is very rich
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Summary of Empirical Results

I Coefficients on the financial variables make sense.
I Black is statistically significant in all specifications
I Race-financial variable interactions are not significant.
I Including the covariates sharply reduces the effect of race on denial

probability.
I LPM, probit, logit: similar estimates of effect of race on the probability of

denial.
I Estimated effects are large in a “real world” sense.
I Finally, we should carefully think about ‘internal validity’ and ‘external

validity’ of the empirical findings.
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Conclusion SW Section 11.5

I If Yi is binary, then E(Y |X ) = Pr(Y = 1|X )
I Three models:

I linear probability model (linear multiple regression)
I probit (cumulative standard normal distribution)
I logit (cumulative standard logistic distribution)

I LPM, probit, logit all produce predicted probabilities
I Effect of ∆X is change in conditional probability that Y = 1. For logit and

probit, this depends on the initial X
I Probit and logit are estimated via maximum likelihood

I Coefficients are normally distributed for large n
I Large-n hypothesis testing, conf. intervals is as usual
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