ECON 7310 Elements of Econometrics Week 9: Regression with a Binary Dependent Variable

David Du¹

¹ University of Queensland

Draft

1 / 34

メロトメ 御 トメ 君 トメ 君 トー 君

Outline

- \blacktriangleright The Linear Probability Model
- **Probit and Logit Regression**
- Estimation and Inference in Probit and Logit
- **Application to Racial Discrimination in Mortgage Lending**

Binary Dependent Variables: What's Different?

▶ So far the dependent variable (*Y*) has been continuous:

- \blacktriangleright district-wide average test score
- \blacktriangleright traffic fatality rate
- ► What if *Y* is binary?
	- $Y =$ get into college, or not:
		- $X =$ high school grades, SAT scores, demographic variables
	- $Y = p$ erson smokes, or not:
		- $X =$ cigarette tax rate, income, demographic variables
	- $Y =$ mortgage application is accepted, or not;
		- $X =$ race, income, house characteristics, marital status

Example: Mortgage Denial and Race, The Boston Fed HMDA Dataset

- \blacktriangleright Individual applications for single-family mortgages made in 1990 in the greater Boston area
- ▶ 2380 observations, collected under Home Mortgage Disclosure Act (HMDA)
- \blacktriangleright Variables include:
	- \blacktriangleright Dependent variable: Is the mortgage denied or accepted?
	- \blacktriangleright Independent variables: income, wealth, employment status, other characteristics of applicant like race.

Binary Dependent Variables and the Linear Probability Model SW Section 11.1

 \triangleright A natural starting point is the linear regression model with a single X:

$$
Y_i = \beta_0 + \beta_1 X_i + u_i
$$

- \blacktriangleright But:
	- ► What does β_1 mean when *Y* is binary? Is $\beta_1 = \frac{Y}{X}$?
	- **X** What does the line $\beta_0 + \beta_1 X$ mean when *Y* is binary?
	- If What does the predicted value \hat{Y} mean when *Y* is binary? Ex: $\hat{Y} = 0.26$?
- \blacktriangleright When *Y* is binary, we have

$$
Pr(Y=1|X)=\beta_0+\beta_1X
$$

- In This is because $E(Y|X) = 1 \times Pr(Y = 1|X) + 0 \times Pr(Y = 0|X)$. And, LS assumption #1, $E(u|X) = 0 \Rightarrow E(Y|X) = E(\beta_0 + \beta_1 X + u|X) = \beta_0 + \beta_1 X$
- \triangleright So, \hat{Y} is the predicted probability that $Y = 1$, given X β_1 is the change in probability that $Y = 1$ for a unit change in X:

Example: linear probability model, HMDA data Mortgage denial vs. ratio of debt payments to income (P/I ratio) in a subset of the HMDA data set $(n = 127)$

K ロ ▶ K 何 ▶ K ヨ \mathbf{p} 6 / 34 Linear probability model: full HMDA data set

$$
Deny = -0.080 + 0.604 \times (Plratio), \quad n = 2,380
$$

(0.032) (0.098)

 \triangleright What is the predicted value for P/I ratio = .3?

Pr(*deny* = 1|*PIratio* = .3) = $-.080 + .604 \times .3 = .101$

► Calculating "effects:" increase P/I ratio from .3 to .4:

$$
Pr(deny = 1 | P \mid ratio = .4) = -.080 + .604 \times .4 = .161
$$

 \blacktriangleright The effect on the probability of denial of an increase in P/I ratio from .3 to .4 is to increase the probability by .06, that is, by 6.0 percentage points.

Linear probability model: full HMDA data set

Next include black as a regressor:

Deny = −0.091+ 0.559 × (*PIratio*)+ 0.177 × *Black*, *n* = 2, 380 (0.032) (0.098) (0.025)

Predicted probability of denial:

► for black applicant with P/I ratio $= .3$:

 $Pr(deny = 1) = -.091 + .559 \times .3 + .177 \times 1 = .254$

▶ for white applicant, P/I ratio = .3:

 $Pr(deny = 1) = -.091 + .559 \times .3 + .177 \times 0 = .077$

- \blacktriangleright difference = .177 = 17.7 percentage points
- \triangleright Coefficient on black is significant at the 5% level
- \triangleright Still plenty of room for omitted variable bias?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q Q

The linear probability model: Summary

- In The linear probability model models $Pr(Y = 1|X)$ as a linear function of *X*
- \blacktriangleright Advantages:
	- \blacktriangleright simple to estimate and to interpret
	- \triangleright inference is the same as for multiple regression (heteroskedasticity robust SE!!)
- \blacktriangleright Disadvantages:
	- \blacktriangleright A LPM says that the change in the predicted probability for a given change in *X* is the same for all values of *X*, but that doesn't make sense.
	- Also, LPM predicted probabilities can be < 0 or $> 1!$
- \blacktriangleright These disadvantages can be solved by using a nonlinear probability model: probit and logit regression

Probit and Logit Regression SW Section 11.2

 \blacktriangleright The problem with the linear probability model is that it models the probability of Y=1 as being linear:

$$
Pr(Y=1|X)=\beta_0+\beta_1X
$$

 \blacktriangleright Instead, we want:

- 1. *Pr*($Y = 1|X$) to be increasing in X for $\beta_1 > 0$, and
- 2. $0 \leq Pr(Y = 1|X) \leq 1$ for all X
- \blacktriangleright This requires using a nonlinear functional form for the probability.
- \blacktriangleright The probit model and logit model always satisfy these conditions:

Probit Regression

 \blacktriangleright Probit model considers the structure

$$
z_i = \beta_0 + \beta_1 X_i + u_i,
$$

$$
u_1, \ldots, u_n \stackrel{iid}{\sim} \mathcal{N}(0, 1)
$$

where we do not observe *zⁱ* but we observe

$$
Y_i = \left\{ \begin{array}{c} 1 \text{ if } z_i \geq 0 \\ 0 \text{ if } z_i < 0 \end{array} \right.
$$

 \blacktriangleright Then, a simple algebra shows that

$$
Pr(Y_i = 1 | X_i) = \Phi(\beta_0 + \beta_1 X_i),
$$

where Φ is the CDF of $\mathcal{N}(0, 1)$.

For example, if $\beta_0 = -2$ **,** $\beta_1 = 3$ **, and** $X_i = 0.4$ **,**

$$
Pr(Y_i = 1 | X_i = 0.4) = \Phi(-2 + 3 \times 0.4) = \Phi(-0.8)
$$

Probit Regression, continued

So, $Pr(Y_i = 1 | X_i = 0.4) = \Phi(-0.8) = 0.2119$.

Probit Regression, continued

 \blacktriangleright The "S-shape" gives us what we want:

- 1. *Pr*($Y = 1|X$) to be increasing in X for $\beta_1 > 0$, and
- 2. 0 \leq *Pr*($Y = 1|X$) \leq 1 for all X
- Easy to use: $-$ the probabilities are tabulated in the cumulative normal tables (and also are easily computed using regression software)

13 / 34

メロメメ 御きメモ メモ きっと 悪い

- \blacktriangleright Relatively straightforward interpretation:
	- \triangleright $\beta_0 + \beta_1 X = z$ -value
	- $\widehat{B}_0 + \widehat{\beta}_1 X$ is the predicted *z*-value, given *X*
	- \triangleright β_1 is the change in the *z*-value for a unit change in X

Stata example: HMDA data

Stata example: HMDA data

- **Positive coefficient** β_1 **: Does this make sense?**
- \triangleright Standard errors have the usual interpretation
- \blacktriangleright Predicted probabilities:

Pr(*deny* = 1|*PIratio* = 0.3) = Φ(−2.19+2.97×0.3) = Φ(−1.30) = .097

 \blacktriangleright Effect of change in P/I ratio from 0.3 to 0.4:

Pr(*deny* = 1|*PIratio* = 0.4) = Φ(−2.19+2.97×0.4) = Φ(−1.00) = .159

▶ Predicted probability of denial rises from .097 to .159

Probit regression with multiple regressors

 \blacktriangleright A slight extension gives

$$
Pr(Y = 1 | X_1, X_2) = \Phi(\beta_0 + \beta_1 X_1 + \beta_2 X_2),
$$

where Φ the cumulative normal distribution function.

- \triangleright $\beta_0 + \beta_1 X_1 + \beta_2 X_2$ is the *z*-value (or *z*-index, *z*-score) of the Probit model.
- \triangleright β_1 is the effect on the *z*-score of a unit change in X_1 , holding constant X_2

STATA Example: Predicted probit probabilities

STATA Example, continued

- \blacktriangleright Is the coefficient on black statistically significant?
- Estimated effect of race for P/I ratio = 0.3:

 $Pr(deny = 1|0.3, 1) = \Phi(-2.26 + 2.74 \times 0.3 + 0.71 \times 1) = 0.233$ $Pr(deny = 1|0.3, 0) = \Phi(-2.26 + 2.74 \times 0.3 + 0.71 \times 0) = 0.075$

- \triangleright Difference in rejection probabilities = .158 (15.8 percentage points)
- \triangleright Still plenty of room for omitted variable bias!

Logit regression

 \blacktriangleright Logit model is the same as Probit model except that it uses the CDF of logistic distribution, i.e.,

$$
\Pr(Y = 1 | X) = F(\beta_0 + \beta_1 X) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 X))}
$$

- \blacktriangleright Because logit and probit use different probability functions, the coefficients $(\beta's)$ are different in logit and probit, but predicted probabilities are often very similar.
- \blacktriangleright Why bother with logit if we have probit?
	- \blacktriangleright The main reason is historical: logit is computationally faster & easier
	- In practice, logit and probit are very similar $-$ since empirical results typically do not hinge on the logit/probit choice, both tend to be used in practice
	- \triangleright So, we use probit or logit depending on which method is easiest to use in the software package at hand (both are easy in Stata)

STATA Example: logit

Comparison: probit vs logit

The predicted probabilities from the probit and logit models are very close in these HMDA regressions:

21 / 34

Estimation

- \triangleright We obtain maximum likelihood estimator (MLE) for logit/probit.
- \blacktriangleright For probit, we have

$$
Pr(Y = 1|X) = \Phi(\beta_0 + \beta_1 X)
$$

Pr(Y = 0|X) = 1 - \Phi(\beta_0 + \beta_1 X)

▶ Then, the probability mass function (PMF) of *Y* can be written as

$$
\Phi(\beta_0+\beta_1X)^{\gamma}(1-\Phi(\beta_0+\beta_1X))^{1-\gamma}
$$

 \blacktriangleright When $(Y_1, X_1), \ldots, (Y_n, X_n)$ are independently distributed, the joint PMF of (Y_1, \ldots, Y_n) conditional on (X_1, \ldots, X_n) is

$$
\prod_{i=1}^n \Phi(\beta_0 + \beta_1 X_i)^{Y_i} (1 - \Phi(\beta_0 + \beta_1 X_i))^{1 - Y_i}
$$

which can be viewed as the likelihood function of (β_0, β_1) .

Estimation: MLE

 $▶$ Idea is to find $(β_0, β_1)$ under which $(Y_1, X_1), \ldots, (Y_n, X_n)$ is the most likely. That is, the MLE $(\beta_0^{ML}, \beta_1^{ML})$ solves

$$
\max_{\beta_0, \beta_1} \prod_{i=1}^n \Phi(\beta_0 + \beta_1 X_i)^{Y_i} (1 - \Phi(\beta_0 + \beta_1 X_i))^{1 - Y_i}
$$

- \triangleright We cannot solve this problem by hand. Use Stata or other softwares.
- \blacktriangleright It turns out that
	-
	- \blacktriangleright ($\widehat{\beta}_0^{ML}, \widehat{\beta}_1^{ML}$) are consistent and asymptotically normally distributed.
 \blacktriangleright Using the asymptotic distribution, we can construct the standard errors.
	- \blacktriangleright Testing and confidence intervals proceed as usual
- I Logit is the same but uses the logit CDF *F* instead of Φ

メロトメ 御 メメ きょく 語 メーヨー

Measure of Fit

- \triangleright Usual R^2 and \bar{R}^2 do not make sense here. We use two alternative measures of fit.
- **Fig. 1** The fraction correctly predicted:
	- For each *i* = 1, ..., *n*, let *I_i* = 1 if $Φ(β_0^{\text{ML}} + β_1^{\text{ML}}X_i) ≥ 0.5$ for $Y_i = 1$ or $\Phi(\beta_{0}^{ML} + \beta_{1}^{ML}X_{i})$ < 0.5 for $Y_{i} = 0$. Then, the fraction correctly predicted = $\sum_{i}^{+\infty} I_i / n$.
	- \triangleright Drawback: both 0.51 and 0.99 are counted in the same way. (quality of prediction)
- The **pseudo** R^2 : uses the maximized (log) likelihood taking into account the number of regressors.
	- In The pseudo- R^2 measures the quality of fit of a probit/logit model by comparing values of the maximized likelihood function with all the regressors to the value of the likelihood with none.

$$
\Rightarrow \text{Pseudo-}R^2 = 1 - \frac{LL_{ur}}{LL_0}.
$$

Application to the Boston HMDA Data SW Section 11.4

- \triangleright Mortgages (home loans) are an essential part of buying a home.
- \blacktriangleright Is there differential access to home loans by race?
- \blacktriangleright If two otherwise identical individuals, one white and one black, applied for a home loan, is there a difference in the probability of denial?
- \triangleright Data on individual characteristics, property characteristics, and loan denial/acceptance
- \blacktriangleright The mortgage application process circa 1990-1991:
	- \blacktriangleright Go to a bank or mortgage company
	- \blacktriangleright Fill out an application (personal+financial info)
	- \blacktriangleright Meet with the loan officer

The Loan Officer's Decision

 \triangleright Then the loan officer decides – by law, in a race-blind way. Presumably, the bank wants to make profitable loans, and the loan officer doesn't want to originate defaults.

26 / 34

(ロ) (個) (目) (言) (目) (目)

- \blacktriangleright Loan officer uses key financial variables:
	- \blacktriangleright P/I ratio
	- \blacktriangleright housing expense-to-income ratio
	- \blacktriangleright loan-to-value ratio
	- \blacktriangleright personal credit history
- \blacktriangleright The decision rule is nonlinear:
	- \blacktriangleright loan-to-value ratio $> 80\%$
	- \triangleright loan-to-value ratio $> 95\%$ (what happens in default?)
	- \blacktriangleright credit score

Regression Specifications

- Estimate $Pr(deny = 1|black, otherXs)$ by linear probability model, probit
- \blacktriangleright Main problem with the regressions so far: potential omitted variable bias.
- \blacktriangleright The following variables (i) enter the loan officer decision and (ii) are or could be correlated with race:
	- \blacktriangleright wealth, type of employment
	- \blacktriangleright credit history
	- \blacktriangleright family status
- \blacktriangleright Fortunately, the HMDA data set is very rich

Additional Applicant Characteristics

TABLE 11.2 Mortgage Denial Regressions Using the Boston HMDA Data

Dependent variable: $deny = 1$ if mortgage application is denied, $= 0$ if accepted; 2380 observations.

メロトメ 倒 トメ ミトメ ミトー 毛 2990

30 / 34

These regressions were estimated using the $n = 2380$ observations in the Boston HMDA data set described in Appendix 11.1. The linear probability model was estimated by OLS, and probit and logit regressions were estimated by maximum likelihood. Standard errors are given in parentheses under the coefficients, and p-values are given in parentheses under the F-statistics. The change in predicted probability in the final row was computed for a hypothetical applicant whose values of the regressors, other than race, equal the sample mean. Individual coefficients are statistically significant at the *5% or **1% level.

Summary of Empirical Results

- \triangleright Coefficients on the financial variables make sense.
- \blacktriangleright Black is statistically significant in all specifications
- \blacktriangleright Race-financial variable interactions are not significant.
- \blacktriangleright Including the covariates sharply reduces the effect of race on denial probability.
- \blacktriangleright LPM, probit, logit: similar estimates of effect of race on the probability of denial.
- \blacktriangleright Estimated effects are large in a "real world" sense.
- \blacktriangleright Finally, we should carefully think about 'internal validity' and 'external validity' of the empirical findings.

Conclusion SW Section 11.5

- If *Y_i* is binary, then $E(Y|X) = Pr(Y = 1|X)$
- \blacktriangleright Three models:
	- \blacktriangleright linear probability model (linear multiple regression)
	- \triangleright probit (cumulative standard normal distribution)
	- \triangleright logit (cumulative standard logistic distribution)
- \blacktriangleright LPM, probit, logit all produce predicted probabilities
- I Effect of ∆*X* is change in conditional probability that *Y* = 1. For logit and probit, this depends on the initial *X*
- \blacktriangleright Probit and logit are estimated via maximum likelihood
	- ▶ Coefficients are normally distributed for large *n*
	- ▶ Large-*n* hypothesis testing, conf. intervals is as usual